Trachoma.
Journal
Nature reviews. Disease primers
ISSN: 2056-676X
Titre abrégé: Nat Rev Dis Primers
Pays: England
ID NLM: 101672103
Informations de publication
Date de publication:
26 05 2022
26 05 2022
Historique:
accepted:
14
04
2022
entrez:
26
5
2022
pubmed:
27
5
2022
medline:
31
5
2022
Statut:
epublish
Résumé
Trachoma is a neglected tropical disease caused by infection with conjunctival strains of Chlamydia trachomatis. It can result in blindness. Pathophysiologically, trachoma is a disease complex composed of two linked chronic processes: a recurrent, generally subclinical infectious-inflammatory disease that mostly affects children, and a non-communicable, cicatricial and, owing to trichiasis, eventually blinding disease that supervenes in some individuals later in life. At least 150 infection episodes over an individual's lifetime are needed to precipitate trichiasis; thus, opportunity exists for a just global health system to intervene to prevent trachomatous blindness. Trachoma is found at highest prevalence in the poorest communities of low-income countries, particularly in sub-Saharan Africa; in June 2021, 1.8 million people worldwide were going blind from the disease. Blindness attributable to trachoma can appear in communities many years after conjunctival C. trachomatis transmission has waned or ceased; therefore, the two linked disease processes require distinct clinical and public health responses. Surgery is offered to individuals with trichiasis and antibiotic mass drug administration and interventions to stimulate facial cleanliness and environmental improvement are designed to reduce infection prevalence and transmission. Together, these interventions comprise the SAFE strategy, which is achieving considerable success. Although much work remains, a continuing public health problem from trachoma in the year 2030 will be difficult for the world to excuse.
Identifiants
pubmed: 35618795
doi: 10.1038/s41572-022-00359-5
pii: 10.1038/s41572-022-00359-5
doi:
Types de publication
Journal Article
Review
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
32Subventions
Organisme : Wellcome Trust
ID : 207472/Z/17/Z
Pays : United Kingdom
Organisme : NEI NIH HHS
ID : UG1 EY030833
Pays : United States
Organisme : World Health Organization
ID : 001
Pays : International
Organisme : Wellcome Trust
ID : 206275/Z/17/Z
Pays : United Kingdom
Organisme : NEI NIH HHS
ID : UG1 EY025992
Pays : United States
Organisme : NEI NIH HHS
ID : UG1 EY028088
Pays : United States
Informations de copyright
© 2022. World Health Organization, under exclusive licence to Springer Nature Limited.
Références
World Health Organization. Ending the Neglect to Attain the Sustainable Development Goals: a Road Map for Neglected Tropical Diseases 2021–2030 (World Health Organization, 2020).
Flaxman, S. R. et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob. Health 5, e1221–e1234 (2017).
pubmed: 29032195
Taylor, H. R. et al. An animal model of trachoma II. The importance of repeated reinfection. Invest. Ophthalmol. Vis. Sci. 23, 507–515 (1982).
pubmed: 6749750
Grayston, J. T., Wang, S. P., Yeh, L. J. & Kuo, C. C. Importance of reinfection in the pathogenesis of trachoma. Rev. Infect. Dis. 7, 717–725 (1985).
pubmed: 4070905
Hadfield, J. et al. Comprehensive global genome dynamics of Chlamydia trachomatis show ancient diversification followed by contemporary mixing and recent lineage expansion. Genome Res. 27, 1220–1229 (2017).
pubmed: 28588068
pmcid: 5495073
West, S. K., Munoz, B., Mkocha, H., Hsieh, Y. H. & Lynch, M. C. Progression of active trachoma to scarring in a cohort of Tanzanian children. Ophthalmic Epidemiol. 8, 137–144 (2001).
pubmed: 11471083
Wolle, M. A., Munoz, B. E., Mkocha, H. & West, S. K. Constant ocular infection with Chlamydia trachomatis predicts risk of scarring in children in Tanzania. Ophthalmology 116, 243–247 (2009).
pubmed: 19091415
Rajak, S. N. et al. The clinical phenotype of trachomatous trichiasis in Ethiopia: not all trichiasis is due to entropion. Invest. Ophthalmol. Vis. Sci. 52, 7974–7980 (2011).
pubmed: 21896855
pmcid: 3219424
Palmer, S. L. et al. ‘A living death’: a qualitative assessment of quality of life among women with trichiasis in rural Niger. Int. Health 6, 291–297 (2014).
pubmed: 25125577
Frick, K. D., Hanson, C. L. & Jacobson, G. A. Global burden of trachoma and economics of the disease. Am. J. Trop. Med. Hyg. 69, 1–10 (2003).
pubmed: 14692674
Habtamu, E. et al. Trachoma and relative poverty: a case-control study. PLoS Negl. Trop. Dis. 9, e0004228 (2015).
pubmed: 26600211
pmcid: 4657919
Taylor, H. R. Trachoma: a Blinding Scourge from the Bronze Age to the Twenty-First Century (Centre for Eye Research Australia, 2008).
Dolin, P. J. et al. Reduction of trachoma in a sub-Saharan village in absence of a disease control programme. Lancet 349, 1511–1512 (1997).
pubmed: 9167460
Hoechsmann, A. et al. Reduction of trachoma in the absence of antibiotic treatment: evidence from a population-based survey in Malawi. Ophthalmic Epidemiol. 8, 145–153 (2001).
pubmed: 11471084
Jha, H. et al. Disappearance of trachoma from Western Nepal. Clin. Infect. Dis. 35, 765–768 (2002).
pubmed: 12203176
Flueckiger, R. M. et al. The global burden of trichiasis in 2016. PLoS Negl. Trop. Dis. 13, e0007835 (2019).
pubmed: 31765415
pmcid: 6901231
World Health Organization. WHO Alliance for the Global Elimination of Trachoma by 2020: progress report on elimination of trachoma, 2020. Wkly Epidemiol. Rec. 96, 353–364 (2021). The most recent annual progress report from WHO on global trachoma elimination.
Sata, E. et al. Twelve-year longitudinal trends in trachoma prevalence among children aged 1–9 years in Amhara, Ethiopia, 2007–2019. Am. J. Trop. Med. Hyg. https://doi.org/10.4269/ajtmh.20-1365 (2021).
doi: 10.4269/ajtmh.20-1365
pubmed: 34695789
pmcid: 8733485
Duke-Elder, W. S. Textbook of Ophthalmology. Volume II: Clinical Methods of Examination, Congenital and Developmental Anomalies, General Pathological and Therapeutic Considerations, Diseases of the Outer Eye (Henry Kimpton, 1937).
Dunn, F. L. Sociomedical contributions to trachoma research and intervention. Rev. Infect. Dis. 7, 783–786 (1985).
pubmed: 4070915
Taylor, H. R. Trachoma in Australia. Med. J. Aust. 175, 371–372 (2001).
pubmed: 11700815
Mabey, D. C., Bailey, R. L., Ward, M. E. & Whittle, H. C. A longitudinal study of trachoma in a Gambian village: implications concerning the pathogenesis of chlamydial infection. Epidemiol. Infect. 108, 343–351 (1992).
pubmed: 1582475
pmcid: 2271993
Taylor, H. R. & Anjou, M. D. Trachoma in Australia: an update. Clin. Exp. Ophthalmol. 41, 508–512 (2013).
pubmed: 23078264
Smith, J. L. et al. The geographical distribution and burden of trachoma in Africa. PLoS Negl. Trop. Dis. 7, e2359 (2013).
pubmed: 23951378
pmcid: 3738464
Tafida, A. et al. Poverty and blindness in Nigeria: results from the National Survey of Blindness and Visual Impairment. Ophthalmic Epidemiol. 22, 333–341 (2015).
pubmed: 26395660
Solomon, A. W. et al. Strategies for control of trachoma: observational study with quantitative PCR. Lancet 362, 198–204 (2003).
pubmed: 12885481
Taylor, H. R., Siler, J. A., Mkocha, H. A., Munoz, B. & West, S. The natural history of endemic trachoma: a longitudinal study. Am. J. Trop. Med. Hyg. 46, 552–559 (1992).
pubmed: 1599049
Burton, M. J. et al. Re-emergence of Chlamydia trachomatis infection after mass antibiotic treatment of a trachoma-endemic Gambian community: a longitudinal study. Lancet 365, 1321–1328 (2005).
pubmed: 15823382
Solomon, A. W. et al. Mass treatment with single-dose azithromycin for trachoma. N. Engl. J. Med. 351, 1962–1971 (2004).
pubmed: 15525721
pmcid: 6850904
West, E. S. et al. Mass treatment and the effect on the load of Chlamydia trachomatis infection in a trachoma-hyperendemic community. Invest. Ophthalmol. Vis. Sci. 46, 83–87 (2005).
pubmed: 15623758
Last, A. et al. Spatial clustering of high load ocular Chlamydia trachomatis infection in trachoma: a cross-sectional population-based study. Pathog. Dis. 75, 1–10 (2017).
World Health Organization Strategic and Technical Advisory Group on Neglected Tropical Diseases. Design and Validation of a Trachomatous Trichiasis-Only Survey WHO/HTM/NTD/PCT/2017.08 (World Health Organization, 2018).
Bero, B. et al. Prevalence of and risk factors for trachoma in Oromia Regional State of Ethiopia: results of 79 population-based prevalence surveys conducted with the Global Trachoma Mapping Project. Ophthalmic Epidemiol. 23, 392–405 (2016).
pubmed: 27820657
pmcid: 6837860
Adera, T. H. et al. Prevalence of and risk factors for trachoma in southern nations, nationalities, and peoples’ region, ethiopia: results of 40 population-based prevalence surveys carried out with the global trachoma mapping project. Ophthalmic Epidemiol. 23, 84–93 (2016).
pubmed: 27918229
pmcid: 5706981
Cromwell, E. A. et al. The excess burden of trachomatous trichiasis in women: a systematic review and meta-analysis. Trans. R. Soc. Trop. Med. Hyg. 103, 985–992 (2009).
pubmed: 19362326
Wondimu, A. & Bejiga, A. Prevalence of trachomatous trichiasis in the community of Alaba District, Southern Ethiopia. East. Afr. Med. J. 80, 365–368 (2003).
pubmed: 16167752
Courtright, P. & West, S. K. Contribution of sex-linked biology and gender roles to disparities with trachoma. Emerg. Infect. Dis. 10, 2012–2016 (2004).
pubmed: 15550216
pmcid: 3328994
Berry, A. & Hall, J. V. The complexity of interactions between female sex hormones and Chlamydia trachomatis infections. Curr. Clin. Microbiol. Rep. 6, 67–75 (2019).
pubmed: 31890462
pmcid: 6936955
Wang, S. P. & Grayston, J. T. Immunologic relationship between genital TRIC, lymphogranuloma venereum, and related organisms in a new microtiter indirect immunofluorescence test. Am. J. Ophthalmol. 70, 367–374 (1970).
pubmed: 4915925
Elwell, C., Mirrashidi, K. & Engel, J. Chlamydia cell biology and pathogenesis. Nat. Rev. Microbiol. 14, 385–400 (2016).
pubmed: 27108705
pmcid: 4886739
Gitsels, A., Sanders, N. & Vanrompay, D. Chlamydial infection from outside to inside. Front. Microbiol. 10, 2329 (2019).
pubmed: 31649655
pmcid: 6795091
Caldwell, H. D., Kromhout, J. & Schachter, J. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect. Immun. 31, 1161–1176 (1981).
pubmed: 7228399
pmcid: 351439
Harris, S. R. et al. Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing. Nat. Genet. 44, 413–419 (2012).
pubmed: 22406642
pmcid: 3378690
Caldwell, H. D. et al. Polymorphisms in Chlamydia trachomatis tryptophan synthase genes differentiate between genital and ocular isolates. J. Clin. Invest. 111, 1757–1769 (2003).
pubmed: 12782678
pmcid: 156111
Puck, A., Liappis, N. & Hildenbrand, G. Ion exchange column chromatographic investigation of free amino acids in tears of healthy adults. Ophthalmic Res. 16, 284–288 (1984).
pubmed: 6483381
Belland, R. J. et al. Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc. Natl Acad. Sci. USA 100, 8478–8483 (2003).
pubmed: 12815105
pmcid: 166254
Ohashi, K., Burkart, V., Flohé, S. & Kolb, H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex. J. Immunol. 164, 558–561 (2000).
pubmed: 10623794
Bailey, R., Osmond, C., Mabey, D. C., Whittle, H. C. & Ward, M. E. Analysis of the household distribution of trachoma in a Gambian village using a Monte Carlo simulation procedure. Int. J. Epidemiol. 18, 944–951 (1989).
pubmed: 2621031
West, S. K., Munoz, B., Turner, V. M., Mmbaga, B. B. & Taylor, H. R. The epidemiology of trachoma in central Tanzania. Int. J. Epidemiol. 20, 1088–1092 (1991).
pubmed: 1800408
Blake, I. M. et al. Estimating household and community transmission of ocular Chlamydia trachomatis. PLoS Negl. Trop. Dis. 3, e401 (2009).
pubmed: 19333364
pmcid: 2655714
Polack, S. R. et al. The household distribution of trachoma in a Tanzanian village: an application of GIS to the study of trachoma. Trans. R. Soc. Trop. Med. Hyg. 99, 218–225 (2005).
pubmed: 15653125
Bailey, R. L. et al. Molecular epidemiology of trachoma in a Gambian village. Br. J. Ophthalmol. 78, 813–817 (1994).
pubmed: 7848974
pmcid: 504962
Hägi, M. et al. Active trachoma among children in Mali: Clustering and environmental risk factors. PLoS Negl. Trop. Dis. 4, e583 (2010).
pubmed: 20087414
pmcid: 2799671
Burton, M. J. et al. Which members of a community need antibiotics to control trachoma? Conjunctival Chlamydia trachomatis infection load in Gambian villages. Invest. Ophthalmol. Vis. Sci. 44, 4215–4222 (2003).
pubmed: 14507864
Last, A. et al. Detecting extra-ocular Chlamydia trachomatis in a trachoma-endemic community in Ethiopia: identifying potential routes of transmission. PLoS Negl. Trop. Dis. 14, e0008120 (2020).
pubmed: 32130213
pmcid: 7075638
Broman, A. T., Shum, K., Munoz, B., Duncan, D. D. & West, S. K. Spatial clustering of ocular chlamydial infection over time following treatment, among households in a village in Tanzania. Invest. Ophthalmol. Vis. Sci. 47, 99–104 (2006).
pubmed: 16384950
Schemann, J. F. et al. Risk factors for trachoma in Mali. Int. J. Epidemiol. 31, 194–201 (2002).
pubmed: 11914321
Taylor, H. R. et al. Hygiene factors and increased risk of trachoma in central Tanzania. Arch. Ophthalmol. 107, 1821–1825 (1989).
pubmed: 2597076
West, S. et al. Water availability and trachoma. Bull. World Health Organ. 67, 71–75 (1989).
pubmed: 2706728
pmcid: 2491213
Golovaty, I. et al. Access to water source, latrine facilities and other risk factors of active trachoma in Ankober, Ethiopia. PLoS ONE 4, e6702 (2009).
pubmed: 19693271
pmcid: 2724741
Amza, A. et al. Community risk factors for ocular Chlamydia infection in Niger: pre-treatment results from a cluster-randomized trachoma trial. PLoS Negl. Trop. Dis. 6, e1586 (2012).
pubmed: 22545165
pmcid: 3335874
Harding-Esch, E. M. et al. Trachoma prevalence and associated risk factors in The Gambia and Tanzania: baseline results of a cluster randomised controlled trial. PLoS Negl. Trop. Dis. 4, e861 (2010).
pubmed: 21072224
pmcid: 2970530
Katz, J. et al. Prevalence and risk factors for trachoma in Sarlahi district, Nepal. Br. J. Ophthalmol. 80, 1037–1041 (1996).
pubmed: 9059265
pmcid: 505698
Hsieh, Y. H., Bobo, L. D., Quinn, T. O. & West, S. K. Risk factors for trachoma: 6-year follow-up of children aged 1 and 2 years. Am. J. Epidemiol. 152, 204–211 (2000).
pubmed: 10933266
Garn, J. V. et al. Sanitation and water supply coverage thresholds associated with active trachoma: modeling cross-sectional data from 13 countries. PLoS Negl. Trop. Dis. 12, e0006110 (2018). Secondary analysis of cross-sectional data from 13 countries showing that community-level sanitation coverage exceeding 80% is associated with herd protection against active trachoma in children.
pubmed: 29357365
pmcid: 5800679
Baggaley, R. F. et al. Distance to water source and altitude in relation to active trachoma in Rombo district, Tanzania. Trop. Med. Int. Health 11, 220–227 (2006).
pubmed: 16451347
pmcid: 6855913
Collier, L. H., Duke-Elder, S. & Jones, B. R. Experimental trachoma produced by cultured virus. Br. J. Ophthalmol. 42, 705–720 (1958).
pubmed: 13607952
pmcid: 509741
West, S. et al. Nonocular Chlamydia infection and risk of ocular reinfection after mass treatment in a trachoma hyperendemic area. Invest. Ophthalmol. Vis. Sci. 34, 3194–3198 (1993).
pubmed: 8407229
Gower, E. W. et al. Chlamydial positivity of nasal discharge at baseline is associated with ocular chlamydial positivity 2 months following azithromycin treatment. Invest. Ophthalmol. Vis. Sci. 47, 4767–4771 (2006).
pubmed: 17065486
Emerson, P. M., Bailey, R. L., Mahdi, O. S., Walraven, G. E. & Lindsay, S. W. Transmission ecology of the fly Musca sorbens, a putative vector of trachoma. Trans. R. Soc. Trop. Med. Hyg. 94, 28–32 (2000).
pubmed: 10748893
Brewer, N. et al. Persistence and significance of Chlamydia trachomatis in the housefly, Musca domestica L. Vector Borne Zoonotic Dis. https://doi.org/10.1089/vbz.2021.0021 (2021).
doi: 10.1089/vbz.2021.0021
pubmed: 34520263
Miller, K. et al. Pesky trachoma suspect finally caught. Br. J. Ophthalmol. 88, 750–751 (2004).
pubmed: 15148205
pmcid: 1772198
Lee, S. et al. Chlamydia on children and flies after mass antibiotic treatment for trachoma. Am. J. Trop. Med. Hyg. 76, 129–131 (2007).
pubmed: 17255240
Emerson, P. M. et al. Effect of fly control on trachoma and diarrhoea. Lancet 353, 1401–1403 (1999).
pubmed: 10227221
Versteeg, B. et al. Viability PCR shows that non-ocular surfaces could contribute to transmission of Chlamydia trachomatis infection in trachoma. PLoS Negl. Trop. Dis. 14, e0008449 (2020). Experimental study demonstrating that Ct can remain viable on plastic, cotton cloth and skin for over 24 hours, firmly establishing the potential for fomite transmission.
pubmed: 32667914
pmcid: 7384675
Gambhir, M. et al. The development of an age-structured model for trachoma transmission dynamics, pathogenesis and control. PLoS Negl. Trop. Dis. 3, e462 (2009). Mathematical model of transmission of conjunctival Ct and development of cicatricial disease, predicting, amongst other things, that more than 100 infections during an individual’s lifetime are needed to generate trachomatous scarring and more than 150 infections are needed to develop TT.
pubmed: 19529762
pmcid: 2691478
Bailey, R., Duong, T., Carpenter, R., Whittle, H. & Mabey, D. The duration of human ocular Chlamydia trachomatis infection is age dependent. Epidemiol. Infect. 123, 479–486 (1999).
pubmed: 10694161
pmcid: 2810784
Jawetz, E., Rose, L., Hanna, L. & Thygeson, P. Experimental inclusion conjunctivitis in man: measurements of infectivity and resistance. JAMA 194, 150–162 (1965).
Grassly, N. C., Ward, M. E., Ferris, S., Mabey, D. C. & Bailey, R. L. The natural history of trachoma infection and disease in a Gambian cohort with frequent follow-up. PLoS Negl. Trop. Dis. 2, e341 (2008).
pubmed: 19048024
pmcid: 2584235
Hu, V. H., Holland, M. J. & Burton, M. J. Trachoma: protective and pathogenic ocular immune responses to Chlamydia trachomatis. PLoS Negl. Trop. Dis. 7, e2020 (2013).
pubmed: 23457650
pmcid: 3573101
Baral, K. et al. Reliability of clinical diagnosis in identifying infectious trachoma in a low-prevalence area of Nepal. Bull. World Health Organ. 77, 461–466 (1999).
pubmed: 10427930
pmcid: 2557684
Bird, M. et al. Does the diagnosis of trachoma adequately identify ocular chlamydial infection in trachoma-endemic areas? J. Infect. Dis. 187, 1669–1673 (2003).
pubmed: 12721948
Michel, C. E., Roper, K. G., Divena, M. A., Lee, H. H. & Taylor, H. R. Correlation of clinical trachoma and infection in Aboriginal communities. PLoS Negl. Trop. Dis. 5, e986 (2011).
pubmed: 21423648
pmcid: 3057949
Schachter, J. et al. Azithromycin in control of trachoma. Lancet 354, 630–635 (1999). Community randomized trial demonstrating that MDA of azithromycin reduces the prevalence of Ct infection and active trachoma.
pubmed: 10466664
Ramadhani, A. M., Derrick, T., Holland, M. J. & Burton, M. J. Blinding trachoma: systematic review of rates and risk factors for progressive disease. PLoS Negl. Trop. Dis. 10, e0004859 (2016).
pubmed: 27483002
pmcid: 4970760
Dawson, C. R., Marx, R., Daghfous, T., Juster, R. & Schachter, J. in Chlamydial Infections: Proceedings of the Seventh International Symposium on Human Chlamydial Infections (eds Bowie, W. R. et al.) 271–278 (Cambridge University Press, 1990).
Wolle, M. A., Munoz, B., Mkocha, H. & West, S. K. Age, sex, and cohort effects in a longitudinal study of trachomatous scarring. Invest. Ophthalmol. Vis. Sci. 50, 592–596 (2009).
pubmed: 18936137
Ramadhani, A. M. et al. Progression of scarring trachoma in Tanzanian children: a four-year cohort study. PLoS Negl. Trop. Dis. 13, e0007638 (2019). Cohort study establishing the strong association between repeated episodes of papillary conjunctival inflammation and trachomatous scarring, building on earlier work.
pubmed: 31412025
pmcid: 6709924
Burton, M. J. et al. Pathogenesis of progressive scarring trachoma in Ethiopia and Tanzania and its implications for disease control: two cohort studies. PLoS Negl. Trop. Dis. 9, e0003763 (2015).
pubmed: 25970613
pmcid: 4430253
Flueckiger, R. M. et al. Understanding the spatial distribution of trichiasis and its association with trachomatous inflammation — follicular. BMC Infect. Dis. 19, 364 (2019).
pubmed: 31039737
pmcid: 6492377
Hu, V. H. et al. Non-chlamydial bacterial infection and progression of conjunctival scarring in trachoma. Invest. Ophthalmol. Vis. Sci. 59, 2339–2344 (2018).
pubmed: 29847638
pmcid: 5939686
Taylor, H. R., Prendergast, R. A., Dawson, C. R., Schachter, J. & Silverstein, A. M. An animal model for cicatrizing trachoma. Invest. Ophthalmol. Vis. Sci. 21, 422–433 (1981).
pubmed: 7275529
Taylor, H. R., Johnson, S. L., Schachter, J. & Prendergast, R. A. An animal model of trachoma: IV. The failure of local immunosuppression to reveal inapparent infection. Invest. Ophthalmol. Vis. Sci. 24, 647–650 (1983).
pubmed: 6841015
Taylor, H. R., Johnson, S. L., Schachter, J., Caldwell, H. D. & Prendergast, R. A. Pathogenesis of trachoma: the stimulus for inflammation. J. Immunol. 138, 3023–3027 (1987).
pubmed: 3571982
el-Asrar, A. M. et al. Immunopathology of trachomatous conjunctivitis. Br. J. Ophthalmol. 73, 276–282 (1989).
pubmed: 2713305
pmcid: 1041713
Hu, V. H. et al. In vivo confocal microscopy of trachoma in relation to normal tarsal conjunctiva. Ophthalmology 118, 747–754 (2011).
pubmed: 21055819
Hu, V. H. et al. In vivo confocal microscopy and histopathology of the conjunctiva in trachomatous scarring and normal tissue: a systematic comparison. Br. J. Ophthalmol. 97, 1333–1337 (2013).
pubmed: 23922266
Hu, V. H. et al. Immunohistochemical analysis of scarring trachoma indicates infiltration by natural killer and undefined CD45 negative cells. PLoS Negl. Trop. Dis. 10, e0004734 (2016).
pubmed: 27219121
pmcid: 4878762
Derrick, T. et al. Increased epithelial expression of CTGF and S100A7 with elevated subepithelial expression of IL-1beta in trachomatous trichiasis. PLoS Negl. Trop. Dis. 10, e0004752 (2016).
pubmed: 27249027
pmcid: 4889093
Rasmussen, S. J. et al. Secretion of proinflammatory cytokines by epithelial cells in response to Chlamydia infection suggests a central role for epithelial cells in chlamydial pathogenesis. J. Clin. Invest. 99, 77–87 (1997).
pubmed: 9011579
pmcid: 507770
Darville, T. & Hiltke, T. J. Pathogenesis of genital tract disease due to Chlamydia trachomatis. J. Infect. Dis. 201, S114–S125 (2010).
pubmed: 20524234
Burton, M. J., Bailey, R. L., Jeffries, D., Mabey, D. C. & Holland, M. J. Cytokine and fibrogenic gene expression in the conjunctivas of subjects from a Gambian community where trachoma is endemic. Infect. Immun. 72, 7352–7356 (2004).
pubmed: 15557667
pmcid: 529133
Natividad, A. et al. Human conjunctival transcriptome analysis reveals the prominence of innate defense in Chlamydia trachomatis infection. Infect. Immun. 78, 4895–4911 (2010).
pubmed: 20823212
pmcid: 2976339
Ramadhani, A. M. et al. Immunofibrogenic gene expression patterns in Tanzanian children with ocular chlamydia trachomatis infection, active trachoma and scarring: baseline results of a 4-year longitudinal study. Front. Cell Infect. Microbiol. 7, 406 (2017).
pubmed: 28966918
pmcid: 5605569
Derrick, T. et al. Immunopathogenesis of progressive scarring trachoma: results of a 4-year longitudinal study in Tanzanian children. Infect. Immun. 88, e00629-19 (2020).
pubmed: 31964744
pmcid: 7093124
Stephens, R. S. The cellular paradigm of chlamydial pathogenesis. Trends Microbiol. 11, 44–51 (2003).
pubmed: 12526854
Vicetti Miguel, R. D., Quispe Calla, N. E., Pavelko, S. D. & Cherpes, T. L. Intravaginal Chlamydia trachomatis challenge infection elicits TH1 and TH17 immune responses in mice that promote pathogen clearance and genital tract damage. PLoS ONE 11, e0162445 (2016).
pubmed: 27606424
pmcid: 5015975
Hu, V. H. et al. Innate immune responses and modified extracellular matrix regulation characterize bacterial infection and cellular/connective tissue changes in scarring trachoma. Infect. Immun. 80, 121–130 (2012).
pubmed: 22038912
pmcid: 3255692
Kechagia, J. Z., Ezra, D. G., Burton, M. J. & Bailly, M. Fibroblasts profiling in scarring trachoma identifies IL-6 as a functional component of a fibroblast-macrophage pro-fibrotic and pro-inflammatory feedback loop. Sci. Rep. 6, 28261 (2016).
pubmed: 27321784
pmcid: 4913315
Solomon, A. W., Peeling, R. W., Foster, A. & Mabey, D. C. Diagnosis and assessment of trachoma. Clin. Microbiol. Rev. 17, 982–1011 (2004).
pubmed: 15489358
pmcid: 523557
Talero, S. L., Munoz, B. & West, S. K. Potential effect of epilation on the outcome of surgery for trachomatous trichiasis. Transl. Vis. Sci. Technol. 8, 30 (2019).
pubmed: 31489257
pmcid: 6707224
Habtamu, E. et al. The impact of trachomatous trichiasis on quality of life: a case control study. PLoS Negl. Trop. Dis. 9, e0004254 (2015).
pubmed: 26598937
pmcid: 4657886
Dhaliwal, U., Nagpal, G. & Bhatia, M. S. Health-related quality of life in patients with trachomatous trichiasis or entropion. Ophthalmic Epidemiol. 13, 59–66 (2006).
pubmed: 16510348
World Health Organization. Report of the 4th Global Scientific Meeting on Trachoma, Geneva. WHO/CDS/NTD/PCT/2019.03 27–29 (World Health Organization, 2019).
Solomon, A. W. et al. The simplified trachoma grading system, amended. Bull. World Health Organ. 98, 698–705 (2020). Defines and discusses the WHO simplified trachoma grading system, intended for use by non-specialist personnel working at community level, and now the basis for determining whether trachoma is a public health problem at the population level.
pubmed: 33177759
pmcid: 7652564
Solomon, A. W., Le Mesurier, R. T. & Williams, W. J. A diagnostic instrument to help field graders evaluate active trachoma. Ophthalmic Epidemiol. 25, 399–402 (2018).
pubmed: 30067432
pmcid: 6850902
Solomon, A. W. et al. Trachoma Control: a Guide for Programme Managers (World Health Organization, 2006).
Tullo, A. B., Richmond, S. J. & Easty, D. L. The presentation and incidence of paratrachoma in adults. J. Hyg. 87, 63–69 (1981).
pubmed: 7252138
pmcid: 2134077
Burr, S. E. et al. Association between ocular bacterial carriage and follicular trachoma following mass azithromycin distribution in The Gambia. PLoS Negl. Trop. Dis. 7, e2347 (2013).
pubmed: 23936573
pmcid: 3723595
Elston, D. M. Confirmation bias in medical decision-making. J. Am. Acad. Dermatol. 82, 572 (2020).
pubmed: 31279036
Dawson, C. R., Jones, B. R. & Tarizzo, M. L. Guide to Trachoma Control in Programmes for the Prevention of Blindness (World Health Organization, 1981).
Thylefors, B., Dawson, C. R., Jones, B. R., West, S. K. & Taylor, H. R. A simple system for the assessment of trachoma and its complications. Bull. World Health Organ. 65, 477–483 (1987).
pubmed: 3500800
pmcid: 2491032
Macleod, C. et al. Eyelash epilation in the absence of trichiasis: results of a population-based prevalence survey in the western division of Fiji. PLoS Negl. Trop. Dis. 11, e0005277 (2017).
pubmed: 28114364
pmcid: 5256864
World Health Organization. Second Global Scientific Meeting on Trachomatous Trichiasis. Cape Town, 4-6 November 2015 WHO/HTM/NTD/2016.5 (World Health Organization, 2016).
Solomon, A. W. et al. The Global Trachoma Mapping Project: methodology of a 34-country population-based study. Ophthalmic Epidemiol. 22, 214–225 (2015).
pubmed: 26158580
pmcid: 4687001
Solomon, A. W. et al. Quality assurance and quality control in the global trachoma mapping project. Am. J. Trop. Med. Hyg. 99, 858–863 (2018).
pubmed: 30039782
pmcid: 6159583
Courtright, P., Flueckiger, R., Harding-Esch, E. M., Lewallen, S. & Solomon, A. W. Tropical Data: Trichiasis Surveys-Training for Mapping of Trachomatous Trichiasis (version 1.1) (International Coalition for Trachoma Control, 2018).
Courtright, P. et al. Tropical Data: Training System for Trachoma Prevalence Surveys (version 3) (International Coalition for Trachoma Control, 2019).
Solomon, A. W. et al. Pilot study of the use of community volunteers to distribute azithromcyin for trachoma control in Ghana. Bull. World Health Organ. 79, 8–14 (2001).
pubmed: 11217675
pmcid: 2566341
de Oliveira Alves, A., Ferreira, V. S. & Bernardes Filho, F. Young boy with roughening in the inner eyelids. Ann. Emerg. Med. 71, e13–e14 (2018).
pubmed: 29458812
Talero, S. L., Resnikoff, S., Saboya-Diaz, M. I. & Solomon, A. W. Giant papillae versus lymphoid follicles of the conjunctiva. Ann. Emerg. Med. 73, 694–695 (2019).
pubmed: 31133188
pmcid: 7116871
Blake, I. M. et al. Targeting antibiotics to households for trachoma control. PLoS Negl. Trop. Dis. 4, e862 (2010).
pubmed: 21072225
pmcid: 2970531
Senyonjo, L. et al. Operational adaptations of the trachoma pre-validation surveillance strategy employed in Ghana: a qualitative assessment of successes and challenges. Infect. Dis. Poverty 8, 78 (2019).
pubmed: 31455431
pmcid: 6712645
Greene, G. S., West, S. K., Mkocha, H., Munoz, B. & Merbs, S. L. Assessment of a novel approach to identify trichiasis cases using community treatment assistants in Tanzania. PLoS Negl. Trop. Dis. 9, e0004270 (2015).
pubmed: 26658938
pmcid: 4676626
Sanders, A. M., Adam, M., Aziz, N., Callahan, E. K. & Elshafie, B. E. Piloting a trachomatous trichiasis patient case-searching approach in two localities of Sudan. Trans. R. Soc. Trop. Med. Hyg. 114, 561–565 (2020).
pubmed: 32307543
pmcid: 7405172
Kabona, G., Flueckiger, R. M., Ngondi, J., Mwingira, U. & Simon, A. Trachomatous Trichiasis Management in Tanzania: Investigation of the Productivity of Case Finding and Referral of Patients to Trichiasis Surgery Services (RTI International, 2019).
Mpyet, C., Ramyil, A., Dami, N. & Courtright, P. Use of an inexpensive magnifier with light source in the diagnosis of trichiasis among community-based case finders in Nigeria. Ophthalmic Epidemiol. 25, 138–142 (2018).
pubmed: 30806539
World Health Organization. Validation of Elimination of Trachoma as a Public Health Problem WHO/HTM/NTD/2016.8 (World Health Organization, 2016).
World Health Organization Strategic and Technical Advisory Group on Neglected Tropical Diseases. Design Parameters for Population-Based Trachoma Prevalence Surveys WHO/HTM/NTD/PCT/2018.07 (World Health Organization, 2018).
Stelmach, R. D. et al. The costs of monitoring trachoma elimination: evaluating the costs of trachoma impact, surveillance, and trachomatous trichiasis (TT)-only surveys. PLoS Negl. Trop. Dis. 13, e0007605 (2019).
pubmed: 31487281
pmcid: 6728015
Solomon, A. W. et al. The importance of failure: how doing impact surveys that fail saves trachoma programs money. Am. J. Trop. Med. Hyg. 103, 2481–2487 (2020).
pubmed: 33025878
pmcid: 7695084
Solomon, A. W. & Kurylo, E. The global trachoma mapping project. Commun. Eye Health 27, 18 (2014).
West, S. K. Milestones in the fight to eliminate trachoma. Ophthalmic Physiol. Opt. 40, 66–74 (2020).
pubmed: 32017172
Courtright, P. et al. Strengthening the links between mapping, planning and global engagement for disease elimination: lessons learnt from trachoma. Br. J. Ophthalmol. 102, 1324–1327 (2018).
pubmed: 29907634
Roberts, C. H. et al. Development and evaluation of a next-generation digital PCR diagnostic assay for ocular Chlamydia trachomatis infections. J. Clin. Microbiol. 51, 2195–2203 (2013).
pubmed: 23637300
pmcid: 3697714
World Health Organization Strategic and Technical Advisory Group for Neglected Tropical Diseases. Trachoma Alternative Indicators Study Data review, 31 August - 1 September 2016, Geneva, Switzerland WHO/HTM/NTD/PCT/2017.10 (World Health Organization, 2017).
Ramadhani, A. M., Derrick, T., Macleod, D., Holland, M. J. & Burton, M. J. The relationship between active trachoma and ocular chlamydia trachomatis infection before and after mass antibiotic treatment. PLoS Negl. Trop. Dis. 10, e0005080 (2016).
pubmed: 27783678
pmcid: 5082620
Butcher, R. M. et al. Low prevalence of conjunctival infection with chlamydia trachomatis in a treatment-naive trachoma-endemic region of the Solomon Islands. PLoS Negl. Trop. Dis. 10, e0004863 (2016).
pubmed: 27603015
pmcid: 5014345
Macleod, C. K. et al. Low prevalence of ocular chlamydia trachomatis infection and active trachoma in the western division of Fiji. PLoS Negl. Trop. Dis. 10, e0004798 (2016).
pubmed: 27404379
pmcid: 4942140
Butcher, R. et al. Clinical signs of trachoma are prevalent among Solomon Islanders who have no persistent markers of prior infection with Chlamydia trachomatis. Wellcome Open. Res. 3, 14 (2018).
pubmed: 29588922
pmcid: 5854984
Butcher, R. et al. Ocular Chlamydia trachomatis infection, anti-Pgp3 antibodies and conjunctival scarring in Vanuatu and Tarawa, Kiribati before antibiotic treatment for trachoma. J. Infect. 80, 454–461 (2020).
pubmed: 32017971
pmcid: 7113835
Macleod, C. K. et al. Trachoma, anti-Pgp3 serology and ocular Chlamydia trachomatis infection in Papua New Guinea. Clin. Infect. Dis. 72, 423–430 (2021).
pubmed: 31965155
Nesemann, J. M. et al. Comparison of smartphone photography, single-lens reflex photography, and field-grading for trachoma. Am. J. Trop. Med. Hyg. https://doi.org/10.4269/ajtmh.20-0386 (2020).
doi: 10.4269/ajtmh.20-0386
pubmed: 33021196
pmcid: 7695070
Snyder, B. M. et al. Smartphone photography as a possible method of post-validation trachoma surveillance in resource-limited settings. Int. Health 11, 613–615 (2019).
pubmed: 31329890
pmcid: 7967810
Kosack, C. S., Page, A. L. & Klatser, P. R. A guide to aid the selection of diagnostic tests. Bull. World Health Organ. 95, 639–645 (2017).
pubmed: 28867844
pmcid: 5578377
Michel, C. E. et al. Field evaluation of a rapid point-of-care assay for targeting antibiotic treatment for trachoma control: a comparative study. Lancet 367, 1585–1590 (2006).
pubmed: 16698411
Harding-Esch, E. M. et al. Diagnostic accuracy of a prototype point-of-care test for ocular Chlamydia trachomatis under field conditions in The Gambia and Senegal. PLoS Negl. Trop. Dis. 5, e1234 (2011).
pubmed: 21829735
pmcid: 3149007
Derrick, T. R. et al. DjinniChip: evaluation of a novel molecular rapid diagnostic device for the detection of Chlamydia trachomatis in trachoma-endemic areas. Parasit. Vectors 13, 533 (2020).
pubmed: 33109267
pmcid: 7590679
Martin, D. L. et al. The use of serology for trachoma surveillance: current status and priorities for future investigation. PLoS Negl. Trop. Dis. 14, e0008316 (2020). Reviews the use of serology as a future programmatic tool for trachoma surveillance.
pubmed: 32970672
pmcid: 7514076
Poston, T. B., Gottlieb, S. L. & Darville, T. Status of vaccine research and development of vaccines for Chlamydia trachomatis infection. Vaccine 37, 7289–7294 (2017).
pubmed: 28111145
Abraham, S. et al. Safety and immunogenicity of the chlamydia vaccine candidate CTH522 adjuvanted with CAF01 liposomes or aluminium hydroxide: a first-in-human, randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Infect. Dis. 19, 1091–1100 (2019).
pubmed: 31416692
Francis, V. & Turner, V. Achieving Community Support for Trachoma Control WHO/PBL/93.36 (World Health Organization, 1993).
Addiss, D. G. Global elimination of lymphatic filariasis: a “mass uprising of compassion”. PLoS Negl. Trop. Dis. 7, e2264 (2013).
pubmed: 24009784
pmcid: 3757069
Burton, M., Habtamu, E., Ho, D. & Gower, E. W. Interventions for trachoma trichiasis. Cochrane Database Syst. Rev. 2015, CD004008 (2015).
pmcid: 4661324
Merbs, S. et al. Trichiasis Surgery for Trachoma 2nd edn (World Health Organization, 2015).
Gower, E. W. et al. Definitions and standardization of a new grading scheme for eyelid contour abnormalities after trichiasis surgery. PLoS Negl. Trop. Dis. 6, e1713 (2012).
pubmed: 22745845
pmcid: 3383763
Mwangi, G., Courtright, P. & Solomon, A. W. Systematic review of the incidence of post-operative trichiasis in Africa. BMC Ophthalmol. 20, 451 (2020).
pubmed: 33203380
pmcid: 7670604
Habtamu, E. et al. Predictors of trachomatous trichiasis surgery outcome. Ophthalmology https://doi.org/10.1016/j.ophtha.2017.03.016 (2017).
doi: 10.1016/j.ophtha.2017.03.016
pubmed: 28438414
Alemayehu, W. et al. Surgery for trichiasis by ophthalmologists versus integrated eye care workers: a randomized trial. Ophthalmology 111, 578–584 (2004). Randomized trial demonstrating that ophthalmologists and integrated eye care workers trained as TT surgeons generate similar outcomes for patients with TT, enabling expanded access to surgery in trachoma-endemic areas.
pubmed: 15019339
Habtamu, E. et al. Posterior versus bilamellar tarsal rotation surgery for trachomatous trichiasis in Ethiopia: a randomised controlled trial. Lancet Glob. Health 4, e175–e184 (2016). Randomized controlled, single-masked clinical trial demonstrating a reduced cumulative incidence of recurrent trichiasis at 12 months in patients randomized to posterior lamellar tarsal rotation than those randomized to bilamellar tarsal rotation.
pubmed: 26774708
pmcid: 5075282
Habtamu, E. et al. Posterior lamellar versus bilamellar tarsal rotation surgery for trachomatous trichiasis: long-term outcomes from a randomised controlled trial. EClinicalMedicine 17, 100202 (2019).
pubmed: 31891136
pmcid: 6933225
Bayissasse, B. et al. Maximising trichiasis surgery success (MTSS) trial: rationale and design of a randomised controlled trial to improve trachomatous trichiasis surgical outcomes. BMJ Open 10, e036327 (2020).
pubmed: 32193277
pmcid: 7202705
Solomon, A. W. Optimising the management of trachomatous trichiasis. Lancet Glob. Health 4, e140–e141 (2016).
pubmed: 26774709
pmcid: 7116499
Rajak, S. N. et al. Absorbable versus silk sutures for surgical treatment of trachomatous trichiasis in Ethiopia: a randomised controlled trial. PLoS Med. 8, e1001137 (2011).
pubmed: 22180732
pmcid: 3236737
Gower, E. W. et al. Trachomatous trichiasis clamp vs standard bilamellar tarsal rotation instrumentation for trichiasis surgery: results of a randomized clinical trial. JAMA Ophthalmol. 131, 294–301 (2013).
pubmed: 23494035
West, S. K. et al. Single-dose azithromycin prevents trichiasis recurrence following surgery: randomized trial in Ethiopia. Arch. Ophthalmol. 124, 309–314 (2006).
pubmed: 16534049
Burton, M. J. et al. A randomised controlled trial of azithromycin following surgery for trachomatous trichiasis in the Gambia. Br. J. Ophthalmol. 89, 1282–1288 (2005).
pubmed: 16170117
pmcid: 1772881
Habtamu, E. et al. Oral doxycycline for the prevention of postoperative trachomatous trichiasis in Ethiopia: a randomised, double-blind, placebo-controlled trial. Lancet Glob. Health 6, e579–e592 (2018).
pubmed: 29653629
pmcid: 5912946
Rajak, S. N. et al. The outcome of trachomatous trichiasis surgery in Ethiopia: risk factors for recurrence. PLoS Negl. Trop. Dis. 7, e2392 (2013).
pubmed: 23991241
pmcid: 3749971
Gower, E. W. et al. Pre-operative trichiatic eyelash pattern predicts post-operative trachomatous trichiasis. PLoS Negl. Trop. Dis. 13, e0007637 (2019).
pubmed: 31589610
pmcid: 6797216
Kreis, A. J. et al. Challenges in addressing post-operative trachomatous trichiasis. Eye 34, 2131–2132 (2020).
pubmed: 31754280
Gupta, K. M., Harding, J. C., Othman, M. S., Merbs, S. L. & Gower, E. W. Why do patients refuse trichiasis surgery? Lessons and an education initiative from Mtwara Region, Tanzania. PLoS Negl. Trop. Dis. 12, e0006464 (2018).
pubmed: 29902219
pmcid: 6001945
Bickley, R. J., Mkocha, H., Munoz, B. & West, S. Identifying patient perceived barriers to trichiasis surgery in Kongwa District, Tanzania. PLoS Negl. Trop. Dis. 11, e0005211 (2017).
pubmed: 28052070
pmcid: 5215731
Lewallen, S., Mahande, M., Tharaney, M., Katala, S. & Courtright, P. Surgery for trachomatous trichiasis: findings from a survey of trichiasis surgeons in Tanzania. Br. J. Ophthalmol. 91, 143–145 (2007).
pubmed: 16973662
West, E. S. et al. The association between epilation and corneal opacity among eyes with trachomatous trichiasis. Br. J. Ophthalmol. 90, 171–174 (2006).
pubmed: 16424528
pmcid: 1860176
Rajak, S. N. et al. Epilation for trachomatous trichiasis and the risk of corneal opacification. Ophthalmology 119, 84–89 (2012).
pubmed: 21975041
Habtamu, E. et al. Epilation for minor trachomatous trichiasis: four-year results of a randomised controlled trial. PLoS Negl. Trop. Dis. 9, e0003558 (2015).
pubmed: 25768796
pmcid: 4358978
Habtamu, E. et al. Effect of repeated epilation for minor trachomatous trichiasis on lash burden, phenotype and surgical management willingness: a cohort study. PLoS Negl. Trop. Dis. 14, e0008882 (2020).
pubmed: 33315876
pmcid: 7769600
Woreta, T. A., Munoz, B. E., Gower, E. W., Alemayehu, W. & West, S. K. Effect of trichiasis surgery on visual acuity outcomes in Ethiopia. Arch. Ophthalmol. 127, 1505–1510 (2009).
pubmed: 19901217
pmcid: 4700533
Oktavec, K. C. et al. Patients’ perceptions of trichiasis surgery: results from the Partnership for Rapid Elimination of Trachoma (PRET) surgery clinical trial. Ophthalmic Epidemiol. 22, 153–161 (2015).
pubmed: 25525820
Habtamu, E. et al. Impact of trichiasis surgery on quality of life: a longitudinal study in ethiopia. PLoS Negl. Trop. Dis. 10, e0004627 (2016).
pubmed: 27078493
pmcid: 4831752
Woreta, F., Munoz, B., Gower, E., Alemayehu, W. & West, S. K. Three-year outcomes of the surgery for trichiasis, antibiotics to prevent recurrence trial. Arch. Ophthalmol. 130, 427–431 (2012).
pubmed: 22159169
Evans, J. R. et al. Antibiotics for trachoma. Cochrane Database Syst. Rev. 2019, CD001860 (2019).
pmcid: 6760986
Bailey, R. L., Arullendran, P., Whittle, H. C. & Mabey, D. C. Randomised controlled trial of single-dose azithromycin in treatment of trachoma. Lancet 342, 453–456 (1993).
pubmed: 8102427
Bowman, R. J. et al. Operational comparison of single-dose azithromycin and topical tetracycline for trachoma. Invest. Ophthalmol. Vis. Sci. 41, 4074–4079 (2000).
pubmed: 11095598
Solomon, A. W. et al. Two doses of azithromycin to eliminate trachoma in a Tanzanian community. N. Engl. J. Med. 358, 1870–1871 (2008).
pubmed: 18434662
pmcid: 6837862
Burton, M. J. et al. Profound and sustained reduction in Chlamydia trachomatis in The Gambia: a five-year longitudinal study of trachoma endemic communities. PLoS Negl. Trop. Dis. 4, e835 (2010).
pubmed: 20957147
pmcid: 2950148
Chidambaram, J. D. et al. Effect of a single mass antibiotic distribution on the prevalence of infectious trachoma. JAMA 295, 1142–1146 (2006).
pubmed: 16522834
Lietman, T., Porco, T., Dawson, C. & Blower, S. Global elimination of trachoma: how frequently should we administer mass chemotherapy? Nat. Med. 5, 572–576 (1999). Mathematical model suggesting that, where <35% of children have active trachoma, annual antibiotic MDA may be sufficient to eliminate trachoma, while biannual MDA may be needed where >50% of children have active trachoma.
pubmed: 10229236
Emerson, P. M., Hooper, P. J. & Sarah, V. Progress and projections in the program to eliminate trachoma. PLoS Negl. Trop. Dis. 11, e0005402 (2017).
pubmed: 28426814
pmcid: 5398479
International Trachoma Initiative. Zithromax Management Guide 2019: How to Successfully Apply for, Administer and Manage the Zithromax Donation for Trachoma Elimination (International Trachoma Initiative, 2019).
Munoz, B. et al. Antibiotic dosage in trachoma control programs: height as a surrogate for weight in children. Invest. Ophthalmol. Vis. Sci. 44, 1464–1469 (2003).
pubmed: 12657580
Ayele, B. et al. Adverse events after mass azithromycin treatments for trachoma in Ethiopia. Am. J. Trop. Med. Hyg. 85, 291–294 (2011).
pubmed: 21813850
pmcid: 3144828
World Health Organization. Ending the Neglect to Attain the Sustainable Development Goals: A Global Strategy on Water, Sanitation and Hygiene to Combat Neglected Tropical Diseases 2021–2030 (World Health Organization, 2021).
Oldenburg, C. E. et al. Safety of azithromycin in infants under six months of age in Niger: a community randomized trial. PLoS Negl. Trop. Dis. 12, e0006950 (2018).
pubmed: 30419040
pmcid: 6258425
Keenan, J. D. et al. Azithromycin to reduce childhood mortality in sub-Saharan Africa. N. Engl. J. Med. 378, 1583–1592 (2018). Cluster randomized, placebo-controlled trial that showed a 13.5% reduction in all-cause mortality in children aged 1–59 months living in communities receiving biannual azithromycin MDA compared with those receiving placebo MDA.
pubmed: 29694816
pmcid: 5849140
Porco, T. C. et al. Effect of mass distribution of azithromycin for trachoma control on overall mortality in Ethiopian children: a randomized trial. JAMA 302, 962–968 (2009).
pubmed: 19724043
Oldenburg, C. E. et al. Mass azithromycin distribution to prevent childhood mortality: a pooled analysis of cluster-randomized trials. Am. J. Trop. Med. Hyg. https://doi.org/10.4269/ajtmh.18-0846 (2019).
doi: 10.4269/ajtmh.18-0846
pubmed: 31595872
pmcid: 6896881
Fry, A. M. et al. Adverse and beneficial secondary effects of mass treatment with azithromycin to eliminate blindness due to trachoma in Nepal. Clin. Infect. Dis. 35, 395–402 (2002).
pubmed: 12145722
Coles, C. L. et al. Association of mass treatment with azithromycin in trachoma-endemic communities with short-term reduced risk of diarrhea in young children. Am. J. Trop. Med. Hyg. 85, 691–696 (2011).
pubmed: 21976574
pmcid: 3183779
Schachterle, S. E. et al. Short-term malaria reduction by single-dose azithromycin during mass drug administration for trachoma, Tanzania. Emerg. Infect. Dis. 20, 941–949 (2014).
pubmed: 24865642
pmcid: 4036785
Hinterwirth, A. et al. Rapid reduction of Campylobacter species in the gut microbiome of preschool children after oral azithromycin: a randomized controlled trial. Am. J. Trop. Med. Hyg. 103, 1266–1269 (2020).
pubmed: 32524948
pmcid: 7470541
Ghinai, R. et al. A cross-sectional study of ‘yaws’ in districts of Ghana which have previously undertaken azithromycin mass drug administration for trachoma control. PLoS Negl. Trop. Dis. 9, e0003496 (2015).
pubmed: 25632942
pmcid: 4310597
Marks, M. et al. Prevalence of active and latent yaws in the Solomon Islands 18 months after azithromycin mass drug administration for trachoma. PLoS Negl. Trop. Dis. 10, e0004927 (2016).
pubmed: 27551787
pmcid: 4994934
Marks, M. et al. Impact of community mass treatment with azithromycin for trachoma elimination on the prevalence of yaws. PLoS Negl. Trop. Dis. 9, e0003988 (2015).
pubmed: 26241484
pmcid: 4524711
Solomon, A. W. et al. Trachoma and yaws: common ground? PLoS Negl. Trop. Dis. 9, e0004071 (2015).
pubmed: 26633176
pmcid: 4669168
Ray, W. A., Murray, K. T., Hall, K., Arbogast, P. G. & Stein, C. M. Azithromycin and the risk of cardiovascular death. N. Engl. J. Med. 366, 1881–1890 (2012).
pubmed: 22591294
pmcid: 3374857
Keenan, J. D., Emerson, P. M., Gaynor, B. D., Porco, T. C. & Lietman, T. M. Adult mortality in a randomized trial of mass azithromycin for trachoma. JAMA Intern. Med. 173, 821–823 (2013).
pubmed: 23545893
pmcid: 3748947
Solomon, A. W. et al. Impact of mass distribution of azithromycin on the antibiotic susceptibilities of ocular Chlamydia trachomatis. Antimicrob. Agents Chemother. 49, 4804–4806 (2005).
pubmed: 16251338
pmcid: 1280160
Hong, K. C. et al. Lack of macrolide resistance in Chlamydia trachomatis after mass azithromycin distributions for trachoma. Emerg. Infect. Dis. 15, 1088–1090 (2009).
pubmed: 19624926
pmcid: 2744222
West, S. K. et al. Is there evidence for resistance of ocular Chlamydia trachomatis to azithromycin after mass treatment for trachoma control? J. Infect. Dis. 210, 65–71 (2014).
pubmed: 24446528
O’Brien, K. S. et al. Antimicrobial resistance following mass azithromycin distribution for trachoma: a systematic review. Lancet Infect. Dis. 19, e14–e25 (2019). Systematic review of antimicrobial resistance associated with azithromycin MDA, demonstrating selection of resistance in some potentially pathogenic bystander organisms but no evidence of resistance in conjunctival Ct.
pubmed: 30292480
Skalet, A. H. et al. Antibiotic selection pressure and macrolide resistance in nasopharyngeal Streptococcus pneumoniae: a cluster-randomized clinical trial. PLoS Med. 7, e1000377 (2010).
pubmed: 21179434
pmcid: 3001893
Haug, S. et al. The decline of pneumococcal resistance after cessation of mass antibiotic distributions for trachoma. Clin. Infect. Dis. 51, 571–574 (2010).
pubmed: 20649409
Seidman, J. C. et al. Increased carriage of macrolide-resistant fecal E. coli following mass distribution of azithromycin for trachoma control. Int. J. Epidemiol. 43, 1105–1113 (2014).
pubmed: 24659584
pmcid: 4121557
Bloch, E. M. et al. Antibiotic resistance in young children in Kilosa district, Tanzania 4 years after mass distribution of azithromycin for trachoma control. Am. J. Trop. Med. Hyg. 97, 815–818 (2017).
pubmed: 28722638
pmcid: 5590597
Seidman, J. C. et al. Longitudinal comparison of antibiotic resistance in diarrheagenic and non-pathogenic Escherichia coli from young Tanzanian children. Front. Microbiol. 7, 1420 (2016).
pubmed: 27656179
pmcid: 5013055
Bojang, A. et al. Prevalence and risk factors for Staphylococcus aureus nasopharyngeal carriage during a PCV trial. BMC Infect. Dis. 17, 588 (2017).
pubmed: 28841852
pmcid: 5574132
Ministry of Health and Medical Education. Elimination of Trachoma, Iran (Ministry of Health and Medical Education, 2018).
West, S. et al. Impact of face-washing on trachoma in Kongwa, Tanzania. Lancet 345, 155–158 (1995).
pubmed: 7823670
Aragie, S. et al. Water, sanitation, and hygiene for control of trachoma in Ethiopia (WUHA): a two-arm, parallel-group, cluster-randomised trial. Lancet Glob. Health 10, e87–e95 (2022).
pubmed: 34919861
Delea, M. G., Solomon, H., Solomon, A. W. & Freeman, M. C. Interventions to maximize facial cleanliness and achieve environmental improvement for trachoma elimination: a review of the grey literature. PLoS Negl. Trop. Dis. 12, e0006178 (2018).
pubmed: 29370169
pmcid: 5800663
Chen, X., Munoz, B., Mkocha, H., Wolle, M. A. & West, S. K. Children as messengers of health knowledge? Impact of health promotion and water infrastructure in schools on facial cleanliness and trachoma in the community. PLoS Negl. Trop. Dis. 15, e0009119 (2021).
pubmed: 33524050
pmcid: 7877774
Dodson, S. et al. Behavioural change interventions for sustained trachoma elimination. Bull. World Health Organ. 96, 723–725 (2018).
pubmed: 30455520
pmcid: 6238993
Emerson, P. M. et al. Role of flies and provision of latrines in trachoma control: cluster-randomised controlled trial. Lancet 363, 1093–1098 (2004).
pubmed: 15064026
Stoller, N. E. et al. Efficacy of latrine promotion on emergence of infection with ocular Chlamydia trachomatis after mass antibiotic treatment: a cluster-randomized trial. Int. Health 3, 75–84 (2011).
pubmed: 21785663
Rabiu, M., Alhassan, M. B., Ejere, H. O. & Evans, J. R. Environmental sanitary interventions for preventing active trachoma. Cochrane Database Syst. Rev. 2012, CD004003 (2012).
pmcid: 4422499
Ejere, H. O., Alhassan, M. B. & Rabiu, M. Face washing promotion for preventing active trachoma. Cochrane Database Syst. Rev. 2015, CD003659 (2015).
pmcid: 4441394
Boisson, S. et al. Water, sanitation and hygiene for accelerating and sustaining progress on neglected tropical diseases: a new Global Strategy 2015-20. Int. Health 8, i19–i21 (2016).
pubmed: 26940305
Blodi, B. A., Byrne, K. A. & Tabbara, K. F. Goblet cell population among patients with inactive trachoma. Int. Ophthalmol. 12, 41–45 (1988).
pubmed: 3220667
Guzey, M., Satici, A. & Karadede, S. Corneal thickness in trachomatous dry eye. Eur. J. Ophthalmol. 12, 18–23 (2002).
pubmed: 11936438
Tabbara, K. F. & Bobb, A. A. Lacrimal system complications in trachoma. Ophthalmology 87, 298–301 (1980).
pubmed: 7393535
Juri Mandić, J. et al. Quality of life and depression level in patients with watery eye. Psychiatr. Danubina 30, 471–477 (2018).
Uchino, M. & Schaumberg, D. A. Dry eye disease: impact on quality of life and vision. Curr. Ophthalmol. Rep. 1, 51–57 (2013).
pubmed: 23710423
pmcid: 3660735
World Health Organization. WHO Alliance for the Global Elimination of Trachoma by 2020: progress report, 2019. Wkly Epidemiol. Rec. 30, 349–360 (2020).
World Health Organization. WHO Validates Saudi Arabia for Eliminating Trachoma as a Public Health Problem (World Health Organization, 2022).
World Health Organization. Future Approaches to Trachoma Control: Report of a Global Scientific Meeting, Geneva, 17–20 June 1996 WHO/PBL/96.56 (World Health Organization, 1997).
Dowdle, W. R. The principles of disease elimination and eradication. Bull. World Health Organ. 76, 22–25 (1998).
pubmed: 10063669
pmcid: 2305684
Oldenburg, C. E. et al. Can we eradicate trachoma? A survey of stakeholders. Br. J. Ophthalmol. 105, 1059–1062 (2020).
pubmed: 32855161
Gebre, T. Rethinking disease eradication: putting countries first. Int. Health 13, 215–221 (2021).
pmcid: 8079318
Pinsent, A. et al. The utility of serology for elimination surveillance of trachoma. Nat. Commun. 9, 5444 (2018).
pubmed: 30575720
pmcid: 6303365
Kim, J. S. et al. Community-level chlamydial serology for assessing trachoma elimination in trachoma-endemic Niger. PLoS Negl. Trop. Dis. 13, e0007127 (2019).
pubmed: 30689671
pmcid: 6366708
Senyonjo, L. G. et al. Serological and PCR-based markers of ocular Chlamydia trachomatis transmission in northern Ghana after elimination of trachoma as a public health problem. PLoS Negl. Trop. Dis. 12, e0007027 (2018).
pubmed: 30550537
pmcid: 6310292
Amoah, B. et al. Model-based geostatistics enables more precise estimates of neglected tropical-disease prevalence in elimination settings: mapping trachoma prevalence in Ethiopia. Int. J. Epidemiol. https://doi.org/10.1093/ije/dyab227 (2021).
doi: 10.1093/ije/dyab227
pmcid: 9082807
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03886519 (2022).
Merbs, S. L. et al. A new surgical technique for postoperative trachomatous trichiasis. Ophthalmic Plast. Reconstr. Surg. https://doi.org/10.1097/iop.0000000000002055 (2021).
doi: 10.1097/iop.0000000000002055
pubmed: 34570049
pmcid: 8571053
Rajak, S. N., Collin, J. R. & Burton, M. J. Trachomatous trichiasis and its management in endemic countries. Surv. Ophthalmol. 57, 105–135 (2012).
pubmed: 22285842
Kim, M. C. et al. Sensitivity and specificity of computer vision classification of eyelid photographs for programmatic trachoma assessment. PLoS ONE 14, e0210463 (2019).
pubmed: 30742639
pmcid: 6370195
Burton, M. J. et al. The Lancet global health commission on global eye health: vision beyond 2020. Lancet Glob. Health 9, e489–e551 (2021).
pubmed: 33607016
pmcid: 7966694
Nash, S. D. et al. Ocular chlamydia trachomatis infection under the surgery, antibiotics, facial cleanliness, and environmental improvement strategy in Amhara, Ethiopia, 2011–2015. Clin. Infect. Dis. 67, 1840–1846 (2018). Epidemiology of ocular Ct in the presence of ongoing implementation of the SAFE strategy in a population with persistently hyperendemic trachoma.
pubmed: 29741592
pmcid: 6260158
Gebre, T. et al. Comparison of annual versus twice-yearly mass azithromycin treatment for hyperendemic trachoma in Ethiopia: a cluster-randomised trial. Lancet 379, 143–151 (2012). Community randomized trial that failed to find evidence of a difference between the effects of biannual and annual azithromycin MDA in a population hyperendemic for trachoma.
pubmed: 22192488
Amza, A. et al. Effectiveness of expanding annual mass azithromycin distribution treatment coverage for trachoma in Niger: a cluster randomised trial. Br. J. Ophthalmol. 102, 680–686 (2017).
pubmed: 28893761
Melese, M. et al. Comparison of annual and biannual mass antibiotic administration for elimination of infectious trachoma. JAMA 299, 778–784 (2008).
pubmed: 18285589
Oldenburg, C. E. et al. Comparison of mass azithromycin coverage targets of children in Niger: a cluster-randomized trachoma trial. Am. J. Trop. Med. Hyg. https://doi.org/10.4269/ajtmh.17-0501 (2017).
doi: 10.4269/ajtmh.17-0501
pubmed: 29260659
pmcid: 5929194
Melo, J. S. et al. Targeted antibiotics for trachoma: a cluster-randomized trial. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciab193 (2021).
doi: 10.1093/cid/ciab193
pubmed: 33674869
pmcid: 8442777
Lietman, T. M. et al. Frequency of mass azithromycin distribution for ocular chlamydia in a trachoma endemic region of Ethiopia: a cluster randomized trial. Am. J. Ophthalmol. 214, 143–150 (2020).
pubmed: 32171768
House, J. I. et al. Assessment of herd protection against trachoma due to repeated mass antibiotic distributions: a cluster-randomised trial. Lancet 373, 1111–1118 (2009).
pubmed: 19329003
Lietman, T. M. et al. Identifying a sufficient core group for trachoma transmission. PLoS Negl. Trop. Dis. 12, e0006478 (2018).
pubmed: 30296259
pmcid: 6175502
Wilson, N. et al. Evaluation of a single dose of azithromycin for trachoma in low-prevalence communities. Ophthalmic Epidemiol. 26, 1–6 (2019).
pubmed: 30543311
Amza, A. et al. Azithromycin Reduction to Reach Elimination of Trachoma (ARRET): study protocol for a cluster randomized trial of stopping mass azithromycin distribution for trachoma. BMC Ophthalmol. 21, 15 (2021).
pubmed: 33407263
pmcid: 7789605
Harding-Esch, E. M. et al. Mass treatment with azithromycin for trachoma: when is one round enough? Results from the PRET Trial in the Gambia. PLoS Negl. Trop. Dis. 7, e2115 (2013).
pubmed: 23785525
pmcid: 3681669
King, J. D. et al. Randomised trial of face-washing to develop a standard definition of a clean face for monitoring trachoma control programmes. Trans. R. Soc. Trop. Med. Hyg. 105, 7–16 (2011).
pubmed: 21036378
Delea, M. G. et al. Development and reliability of a quantitative personal hygiene assessment tool. Int. J. Hyg. Env. Health 227, 113521 (2020).
Harding-Esch, E. M. et al. Facial cleanliness indicators by time of day: results of a cross-sectional trachoma prevalence survey in Senegal. Parasit. Vectors 13, 556 (2020).
pubmed: 33203456
pmcid: 7672817
Wittberg, D. M. et al. WASH Upgrades for Health in Amhara (WUHA): study protocol for a cluster-randomised trial in Ethiopia. BMJ Open 11, e039529 (2021).
pubmed: 33619183
pmcid: 7903120
Budge, S., Ambelu, A., Bartram, J., Brown, J. & Hutchings, P. Environmental sanitation and the evolution of water, sanitation and hygiene. Bull. World Health Organ. 100, 286–288 (2022).
pubmed: 35386561
pmcid: 8958826
Czerniewska, A. et al. Comparison of face washing and face wiping methods for trachoma control: a pilot study. Am. J. Trop. Med. Hyg. 102, 740–743 (2020).
pubmed: 32043457
pmcid: 7124903
Mwangi, G., Courtright, P. & Solomon, A. W. National approaches to trichiasis surgical follow-up, outcome assessment and surgeon audit in trachoma-endemic countries in Africa. Br. J. Ophthalmol. https://doi.org/10.1136/bjophthalmol-2019-315777 (2020).
doi: 10.1136/bjophthalmol-2019-315777
pubmed: 32713838
Djore, D. et al. Pilot audit of trichiasis surgery outcomes using a mobile app in the republic of Chad. Middle East. Afr. J. Ophthalmol. 27, 14–21 (2020).
pubmed: 32549719
pmcid: 7276166
Butcher, R. et al. Conjunctival scarring, corneal pannus and Herbert’s pits in adolescent children in trachoma-endemic populations of the Solomon Islands and Vanuatu. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa1151 (2020).
doi: 10.1093/cid/ciaa1151
pmcid: 8563182
The Lancet Global Health. Unlocking human potential with universal eye health. Lancet Glob. Health 9, e372 (2021).
pubmed: 33740398
Borlase, A. et al. Modelling trachoma post-2020: opportunities for mitigating the impact of COVID-19 and accelerating progress towards elimination. Trans. R. Soc. Trop. Med. Hyg. 115, 213–221 (2021).
pubmed: 33596317
pmcid: 7928577
Blumberg, S. et al. Implications of the COVID-19 pandemic in eliminating trachoma as a public health problem. Trans. R. Soc. Trop. Med. Hyg. 115, 222–228 (2021).
pubmed: 33449114
pmcid: 7928550
Harding-Esch, E. M. et al. Lessons from the field: integrated survey methodologies for neglected tropical diseases. Trans. R. Soc. Trop. Med. Hyg. 115, 124–126 (2021).
pubmed: 33508093
Morice, A., Taleo, F., Barogui, Y., A, C. S. & Marks, M. Lessons from the field: integrated programmes for neglected tropical diseases. Trans. R. Soc. Trop. Med. Hyg. 115, 127–128 (2021).
pubmed: 33241292
Boisson, S. et al. Building on a decade of progress in water, sanitation and hygiene to control, eliminate and eradicate neglected tropical diseases. Trans. R. Soc. Trop. Med. Hyg. 115, 185–187 (2021).
pubmed: 33508098
pmcid: 7842107
Laing, G. et al. One Health for neglected tropical diseases. Trans. R. Soc. Trop. Med. Hyg. 115, 182–184 (2021).
pubmed: 33169163
World Health Organization. Report of the 3rd Global Scientific Meeting on Trachoma, Johns Hopkins University WHO/PBD/2.10 (World Health Organization, 2010).
Hoffman, J. J. et al. 3D images as a field grader training tool for trachomatous trichiasis: a diagnostic accuracy study in Ethiopia. PLoS Negl. Trop. Dis. 13, e0007104 (2019).
pubmed: 30677024
pmcid: 6363231
Courtright, P., Flueckiger, R., Harding-Esch, E. M., Lewallen, S. & Solomon, A. W. Tropical Data: Training System for Trachomatous Trichiasis Population-Based Prevalence Surveys (version 2) (International Coalition for Trachoma Control, 2019).
World Health Organization. Status of elimination of trachoma as a public health problem, 2021. WHO https://www.who.int/images/default-source/maps/trachoma_2021_status.png?sfvrsn=91211dd5_3 (2021).
Solomon, A. W. & Mabey, D. C. W. in International Encyclopaedia of Public Health (2nd ed) (ed Quah, S.) (Elsevier, 2016).
Chandra, N. L. et al. Detection of Chlamydia trachomatis in rectal specimens in women and its association with anal intercourse: a systematic review and meta-analysis. Sex. Transm. Infect. 94, 320–326 (2018).
pubmed: 29431148
Howe, S. E., Shillova, N. & Konjufca, V. Dissemination of Chlamydia from the reproductive tract to the gastro-intestinal tract occurs in stages and relies on Chlamydia transport by host cells. PLoS Pathog. 15, e1008207 (2019).
pubmed: 31790512
pmcid: 6907867