Assessing the contribution of genetic nurture to refractive error.
Journal
European journal of human genetics : EJHG
ISSN: 1476-5438
Titre abrégé: Eur J Hum Genet
Pays: England
ID NLM: 9302235
Informations de publication
Date de publication:
11 2022
11 2022
Historique:
received:
01
12
2021
accepted:
16
05
2022
revised:
10
05
2022
pubmed:
27
5
2022
medline:
4
11
2022
entrez:
26
5
2022
Statut:
ppublish
Résumé
Parents pass on both their genes and environment to offspring, prompting debate about the relative importance of nature versus nurture in the inheritance of complex traits. Advances in molecular genetics now make it possible to quantify an individual's genetic predisposition to a trait via his or her 'polygenic score'. However, part of the risk captured by an individual's polygenic score may actually be attributed to the genotype of their parents. In the most well-studied example of this indirect 'genetic nurture' effect, about half the genetic contribution to educational attainment was found to be attributed to parental alleles, even if those alleles were not inherited by the child. Refractive errors, such as myopia, are a common cause of visual impairment and pose high economic and quality-of-life costs. Despite strong evidence that refractive errors are highly heritable, the extent to which genetic risk is conferred directly via transmitted risk alleles or indirectly via the environment that parents create for their children is entirely unknown. Here, an instrumental variable analysis in 1944 pairs of adult siblings from the United Kingdom was used to quantify the proportion of the genetic risk ('single nucleotide polymorphism (SNP) heritability') of refractive error contributed by genetic nurture. We found no evidence of a contribution from genetic nurture: non-within-family SNP-heritability estimate = 0.213 (95% confidence interval 0.134-0.310) and within-family SNP-heritability estimate = 0.250 (0.152-0.372). Our findings imply the genetic contribution to refractive error is principally an intrinsic effect from alleles transmitted from parents to offspring.
Identifiants
pubmed: 35618892
doi: 10.1038/s41431-022-01126-6
pii: 10.1038/s41431-022-01126-6
pmc: PMC9626539
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1226-1232Subventions
Organisme : Medical Research Council
ID : MC_PC_17228
Pays : United Kingdom
Organisme : NIMH NIH HHS
ID : R37 MH107649
Pays : United States
Organisme : Department of Health
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_QA137853
Pays : United Kingdom
Investigateurs
Jeremy A Guggenheim
(JA)
Cathy Williams
(C)
Informations de copyright
© 2022. The Author(s).
Références
Morgan IG, Wu P-C, Ostrin LA, Tideman JWL, Yam JC, Lan W, et al. IMI risk factors for myopia. Investig Ophthalmol Vis Sci. 2021;62:3.
doi: 10.1167/iovs.62.5.3
Baird PN, Saw S-M, Lanca C, Guggenheim JA, Smith EL, Zhou X, et al. Myopia. Nat Rev Dis Prim. 2020;6:99.
pubmed: 33328468
doi: 10.1038/s41572-020-00231-4
Ohno-Matsui K, Wu P-C, Yamashiro K, Vutipongsatorn K, Fang Y, Cheung CMG, et al. IMI Pathologic Myopia. Investig Ophthalmol Vis Sci. 2021;62:5–5.
doi: 10.1167/iovs.62.5.5
Sanfilippo PG, Hewitt AW, Hammond CJ, Mackey DA. The heritability of ocular traits. Surv Ophthalmol. 2010;55:561–83.
pubmed: 20851442
doi: 10.1016/j.survophthal.2010.07.003
Kiefer AK, Tung JY, Do CB, Hinds DA, Mountain JL, Francke U, et al. Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia. PLoS Genet. 2013;9:e1003299.
pubmed: 23468642
pmcid: 3585144
doi: 10.1371/journal.pgen.1003299
Pickrell JK, Berisa T, Liu JZ, Segurel L, Tung JY, Hinds DA. Detection and interpretation of shared genetic influences on 42 human traits. Nat Genet. 2016;48:709–17.
pubmed: 27182965
pmcid: 5207801
doi: 10.1038/ng.3570
Hysi PG, Choquet H, Khawaja AP, Wojciechowski R, Tedja MS, Yin J, et al. Meta-analysis of 542,934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia. Nat Genet. 2020;52:401–7.
pubmed: 32231278
pmcid: 7145443
doi: 10.1038/s41588-020-0599-0
Wojciechowski R. Nature and nurture: the complex genetics of myopia and refractive error. Clin Genet. 2011;79:301–20.
pubmed: 21155761
doi: 10.1111/j.1399-0004.2010.01592.x
Wu PC, Tsai CL, Wu HL, Yang YH, Kuo HK. Outdoor activity during class recess reduces myopia onset and progression in school children. Ophthalmology. 2013;120:1080–5.
pubmed: 23462271
doi: 10.1016/j.ophtha.2012.11.009
He M, Xiang F, Zeng Y, Mai J, Chen Q, Zhang J, et al. Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial. JAMA. 2015;314:1142–8.
pubmed: 26372583
doi: 10.1001/jama.2015.10803
Cuellar-Partida G, Lu Y, Kho PF, Hewitt AW, Wichmann HE, Yazar S, et al. Assessing the Genetic Predisposition of Education on Myopia: A Mendelian Randomization Study. Genet Epidemiol. 2016;40:66–72.
pubmed: 26497973
doi: 10.1002/gepi.21936
Mountjoy E, Davies NM, Plotnikov D, Davey Smith G, Rodriguez S, Williams CE, et al. Education and myopia: assessing the direction of causality by mendelian randomisation. BMJ. 2018;361:k2022.
pubmed: 29875094
pmcid: 5987847
doi: 10.1136/bmj.k2022
Summers JA, Schaeffel F, Marcos S, Wu H, Tkatchenko AV. Functional integration of eye tissues and refractive eye development: Mechanisms and pathways. Exp Eye Res. 2021;209:108693.
pubmed: 34228967
doi: 10.1016/j.exer.2021.108693
Tkatchenko TV, Tkatchenko AV. Genome-wide analysis of retinal transcriptome reveals common genetic network underlying perception of contrast and optical defocus detection. BMC Med Genomics. 2021;14:153.
pubmed: 34107987
pmcid: 8190860
doi: 10.1186/s12920-021-01005-x
Jong M, Jonas JB, Wolffsohn JS, Berntsen DA, Cho P, Clarkson-Townsend D, et al. IMI 2021 Yearly Digest. Invest Ophthalmol Vis Sci. 2021;62:7.
pubmed: 33909031
pmcid: 8088231
doi: 10.1167/iovs.62.5.7
Kong A, Thorleifsson G, Frigge ML, Vilhjalmsson BJ, Young AI, Thorgeirsson TE, et al. The nature of nurture: Effects of parental genotypes. Science. 2018;359:424–8.
pubmed: 29371463
doi: 10.1126/science.aan6877
Morris TT, Davies NM, Hemani G, Davey Smith G. Population phenomena inflate genetic associations of complex social traits. Sci Adv. 2020;6:eaay0328.
pubmed: 32426451
pmcid: 7159920
doi: 10.1126/sciadv.aay0328
McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet. 2008;9:356–69.
pubmed: 18398418
doi: 10.1038/nrg2344
Tubbs JD, Hwang LD, Luong J, Evans DM, Sham PC. Modeling Parent-Specific Genetic Nurture in Families with Missing Parental Genotypes: Application to Birthweight and BMI. Behav Genet. 2021;51:289–300.
pubmed: 33454873
doi: 10.1007/s10519-020-10040-w
Wu Y, Zhong X, Lin Y, Zhao Z, Chen J, Zheng B, et al. Estimating genetic nurture with summary statistics of multigenerational genome-wide association studies. Proc Natl Acad Sci USA. 2021;118:e2023184118.
pubmed: 34131076
pmcid: 8237646
doi: 10.1073/pnas.2023184118
Cawley J, Han E, Kim J, Norton EC. Testing for family influences on obesity: the role of genetic nurture. Health Econ. 2019;28:937–52.
pubmed: 31237091
doi: 10.1002/hec.3889
Bates TC, Maher BS, Medland SE, McAloney K, Wright MJ, Hansell NK, et al. The nature of nurture: using a virtual-parent design to test parenting effects on children’s educational attainment in genotyped families. Twin Res Hum Genet. 2018;21:73–83.
pubmed: 29530109
doi: 10.1017/thg.2018.11
Willoughby EA, McGue M, Iacono WG, Rustichini A, Lee JJ. The role of parental genotype in predicting offspring years of education: evidence for genetic nurture. Mol Psychiatry. 2019;26. https://doi.org/10.1038/s41380-41019-40494-41381 .
de Zeeuw EL, Hottenga J-J, Ouwens KG, Dolan CV, Ehli EA, Davies GE, et al. Intergenerational transmission of education and ADHD: effects of parental genotypes. Behav Genet. 2020;50:221–32.
pubmed: 32026073
pmcid: 7355279
doi: 10.1007/s10519-020-09992-w
Young AI, Nehzati SM, Lee C, Benonisdottir S, Cesarini D, Benjamin DJ, et al. Mendelian imputation of parental genotypes for genome-wide estimation of direct and indirect genetic effects. bioRxiv. 2020. https://doi.org/10.1101/2020.07.02.185199 .
Hwang LD, Tubbs JD, Luong J, Lundberg M, Moen GH, Wang G, et al. Estimating indirect parental genetic effects on offspring phenotypes using virtual parental genotypes derived from sibling and half sibling pairs. PLoS Genet. 2020;16:e1009154.
pubmed: 33104719
pmcid: 7646364
doi: 10.1371/journal.pgen.1009154
Conley D, Johnson R, Domingue B, Dawes C, Boardman J, Siegal M. A sibling method for identifying vQTLs. PLoS ONE. 2018;13:e0194541.
pubmed: 29617452
pmcid: 5884517
doi: 10.1371/journal.pone.0194541
Juliusdottir T, Steinthorsdottir V, Stefansdottir L, Sveinbjornsson G, Ivarsdottir EV, Thorolfsdottir RB, et al. Distinction between the effects of parental and fetal genomes on fetal growth. Nat Genet. 2021;53:1135–42.
pubmed: 34282336
doi: 10.1038/s41588-021-00896-x
Okbay A, Beauchamp JP, Fontana MA, Lee JJ, Pers TH, Rietveld CA, et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature. 2016;533:539–42.
pubmed: 27225129
pmcid: 4883595
doi: 10.1038/nature17671
Warrington NM, Beaumont RN, Horikoshi M, Day FR, Helgeland Ø, Laurin C, et al. Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nat Genet. 2019;51:804–14.
pubmed: 31043758
pmcid: 6522365
doi: 10.1038/s41588-019-0403-1
Becker J, Burik CAP, Goldman G, Wang N, Jayashankar H, Bennett M, et al. Resource profile and user guide of the Polygenic Index Repository. Nat Hum Behav. 2021;5. https://doi.org/10.1038/s41562-41021-01119-41563 .
Tucker-Drob EM. Measurement error correction of genome-wide polygenic scores in prediction samples. bioRxiv. 2017. https://doi.org/10.1101/165472 .
DiPrete TA, Burik CAP, Koellinger PD. Genetic instrumental variable regression: Explaining socioeconomic and health outcomes in nonexperimental data. Proc Natl Acad Sci USA. 2018;115:E4970–9.
pubmed: 29686100
pmcid: 5984483
doi: 10.1073/pnas.1707388115
Plotnikov D, Williams C, Atan D, Davies NM, Ghorbani Mojarrad N, Guggenheim JA, et al. Effect of education on Myopia: evidence from the United Kingdom ROSLA 1972 reform. Investig Ophthalmol Vis Sci. 2020;61:7.
doi: 10.1167/iovs.61.11.7
Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779.
pubmed: 25826379
pmcid: 4380465
doi: 10.1371/journal.pmed.1001779
Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9.
pubmed: 30305743
pmcid: 6786975
doi: 10.1038/s41586-018-0579-z
Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J. Schizophrenia Working Group of the Psychiatric Genomics C, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47:291–5.
pubmed: 25642630
pmcid: 4495769
doi: 10.1038/ng.3211
Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience. 2015;4:7.
pubmed: 25722852
pmcid: 4342193
doi: 10.1186/s13742-015-0047-8
Loh P-R, Tucker G, Bulik-Sullivan BK, Vilhjalmsson BJ, Finucane HK, Salem RM, et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat Genet. 2015;47:284–90.
pubmed: 25642633
pmcid: 4342297
doi: 10.1038/ng.3190
Brumpton B, Sanderson E, Heilbron K, Hartwig FP, Harrison S, Vie G, et al. Avoiding dynastic, assortative mating, and population stratification biases in Mendelian randomization through within-family analyses. Nat. Commun. 2020;11:3519.
pubmed: 32665587
pmcid: 7360778
doi: 10.1038/s41467-020-17117-4
Selzam S, Ritchie SJ, Pingault J-B, Reynolds CA, O’Reilly PF, Plomin R. Comparing within- and between-family polygenic score prediction. Am J Hum Genet. 2019;105:351–63.
pubmed: 31303263
pmcid: 6698881
doi: 10.1016/j.ajhg.2019.06.006
Guggenheim JA, Pong-Wong R, Haley CS, Gazzard G, Saw SM. Correlations in refractive errors between siblings in the Singapore Cohort Study of Risk-factors for Myopia. Br J Ophthalmol. 2007;91:781–4.
pubmed: 17135339
doi: 10.1136/bjo.2006.107441
Ghorbani Mojarrad N, Williams C, Guggenheim JA. A genetic risk score and number of myopic parents independently predict myopia. Ophthalmic Physiol Opt. 2018;38:492–502.
pubmed: 30182516
doi: 10.1111/opo.12579
Enthoven CA, Tideman JWL, Polling JR, Tedja MS, Raat H, Iglesias AI, et al. Interaction between lifestyle and genetic susceptibility in myopia: the Generation R study. Eur J Epidemiol. 2019;34:777–84.
pubmed: 30945054
pmcid: 6602996
doi: 10.1007/s10654-019-00512-7
Williams C, Suderman M, Guggenheim JA, Ellis G, Gregory S, Iles-Caven Y, et al. Grandmothers’ smoking in pregnancy is associated with a reduced prevalence of early-onset myopia. Sci Rep. 2019;9:15413.
pubmed: 31659193
pmcid: 6817861
doi: 10.1038/s41598-019-51678-9
Morgan I, Rose K. How genetic is school myopia? Prog Retin Eye Res. 2005;24:1–38.
pubmed: 15555525
doi: 10.1016/j.preteyeres.2004.06.004
Guggenheim JA, St Pourcain B, McMahon G, Timpson NJ, Evans DM, Williams C. Assumption-free estimation of the genetic contribution to refractive error across childhood. Mol Vis. 2015;21:621–32.
pubmed: 26019481
pmcid: 4445077
Robinson MR, Kleinman A, Graff M, Vinkhuyzen AAE, Couper D, Miller MB, et al. Genetic evidence of assortative mating in humans. Nat Hum Behav. 2017;1:0016.
doi: 10.1038/s41562-016-0016
Xiang F, He M, Morgan IG. The impact of parental myopia on myopia in chinese children: population-based evidence. Optom Vis Sci. 2012;89:1487–96.
pubmed: 22922777
doi: 10.1097/OPX.0b013e31826912e0
Wang B, Baldwin JR, Schoeler T, Cheesman R, Barkhuizen W, Dudbridge F, et al. Robust genetic nurture effects on education: A systematic review and meta-analysis based on 38,654 families across 8 cohorts. Am J Hum Genet. 2021;108:1780–91.
pubmed: 34416156
pmcid: 8456157
doi: 10.1016/j.ajhg.2021.07.010
Wolffsohn JS, Kollbaum PS, Berntsen DA, Atchison DA, Benavente A, Bradley A, et al. IMI - clinical myopia control trials and instrumentation report. Investig Ophthalmol Vis Sci. 2019;60:M132–60.
doi: 10.1167/iovs.18-25955
Parssinen O, Kauppinen M, Kaprio J, Koskenvuo M, Rantanen T. Heritability of refractive astigmatism: a population-based twin study among 63- to 75-year-old female twins. Investig Ophthalmol Vis Sci. 2013;54:6063–7.
doi: 10.1167/iovs.13-12465
Springelkamp H, Iglesias AI, Mishra A, Höhn R, Wojciechowski R, Khawaja AP, et al. New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics. Hum Mol Genet. 2017;26:438–53.
pubmed: 28073927
pmcid: 5968632