Self-Assembled Heterotypic Cardiac Spheroids from Human Pluripotent Stem Cells.
Cardiac differentiation
Cardiac fibroblasts
Cardiomyocytes
Heterotypic interactions
Scaffold-free
Self-assembly
Spheroids
Stem cells
Tissue engineering
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2022
2022
Historique:
entrez:
26
5
2022
pubmed:
27
5
2022
medline:
31
5
2022
Statut:
ppublish
Résumé
Engineered cardiac tissue models aim to recapitulate the multicellular composition of the native myocardium by incorporating multiple tissue-relevant cell populations. Here, we describe the process of generating self-assembled cardiac microtissue spheroids comprised of heterotypic cardiac cell types. The absence of exogenous extracellular matrix (ECM) or scaffolding makes microtissue assembly dependent upon intercellular adhesion interactions over cell-ECM interactions, analogous to early development. Therefore, this approach creates a 3D platform to study how multicellular heterotypic interactions impact tissue structure, function, and phenotype.
Identifiants
pubmed: 35618897
doi: 10.1007/978-1-0716-2261-2_3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
39-53Informations de copyright
© 2022. Springer Science+Business Media, LLC, part of Springer Nature.
Références
Pinto AR et al (2016) Revisiting cardiac cellular composition. Circ Res 118(3):400–409
doi: 10.1161/CIRCRESAHA.115.307778
Hookway TA et al (2019) Phenotypic variation between stromal cells differentially impacts engineered cardiac tissue function. Tissue Eng Part A 25(9-10):773–785
doi: 10.1089/ten.tea.2018.0362
Giacomelli E et al (2017) Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells. Development 144(6):1008–1017
pubmed: 28279973
pmcid: 5358113
Hookway TA et al (2016) Aggregate formation and suspension culture of human pluripotent stem cells and differentiated progeny. Methods 101:11–20
doi: 10.1016/j.ymeth.2015.11.027
Ratner BD, Hoffman AS (2013) Physicochemical surface modification of materials used in medicine. Biomaterials Science: An Introduction to Materials: Third Edition:259–275
Lian X et al (2012) Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 109(27):E1848–E1857
doi: 10.1073/pnas.1200250109
Lian X et al (2013) Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc 8(1):162–175
doi: 10.1038/nprot.2012.150
Tohyama S et al (2013) Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12(1):127–137
doi: 10.1016/j.stem.2012.09.013
Zhang J et al (2019) Functional cardiac fibroblasts derived from human pluripotent stem cells via second heart field progenitors. Nat Commun 10(1):2238
doi: 10.1038/s41467-019-09831-5
Zhang H et al (2019) Generation of quiescent cardiac fibroblasts from human induced pluripotent stem cells for in vitro modeling of cardiac fibrosis. Circ Res 125(5):552–566
doi: 10.1161/CIRCRESAHA.119.315491
Kinney MA, Sargent CY, McDevitt TC (2011) The multiparametric effects of hydrodynamic environments on stem cell culture. Tissue Eng Part B Rev 17(4):249–262
doi: 10.1089/ten.teb.2011.0040