Quantifying Cardiomyocyte Proliferation and Nucleation to Assess Mammalian Cardiac Regeneration.

Cardiac regeneration Cardiomyocyte nucleation Cardiomyocyte proliferation Immunohistochemistry

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2022
Historique:
entrez: 26 5 2022
pubmed: 27 5 2022
medline: 31 5 2022
Statut: ppublish

Résumé

Neonatal mice display a remarkable ability to regenerate their heart following an injury during the first week of life. A key facet of successful cardiac regeneration is the proliferation of cardiomyocytes to replace the lost cells. Stimulating cardiomyocyte proliferation in the adult heart is a very promising approach to restore cardiac structure and function following injury. Here, we outline our approach to assess cardiomyocyte proliferation following a myocardial injury via the cell cycle markers phospho-histone H3 and Aurora B. We additionally discuss how we assess successful regeneration using wheat germ agglutinin to measure cardiomyocyte size, nuclear staining to quantify cardiomyocyte nucleation, and Trichrome staining to identify myocardial regeneration and scarring in the myocardium.

Identifiants

pubmed: 35618910
doi: 10.1007/978-1-0716-2261-2_16
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

243-253

Informations de copyright

© 2022. Springer Science+Business Media, LLC, part of Springer Nature.

Références

Jopling C, Sleep E, Raya M, Marti M, Raya A, Izpisua Belmonte JC (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464(7288):606–609. https://doi.org/10.1038/nature08899
doi: 10.1038/nature08899 pubmed: 20336145 pmcid: 2846535
Laube F, Heister M, Scholz C, Borchardt T, Braun T (2006) Re-programming of newt cardiomyocytes is induced by tissue regeneration. J Cell Sci 119(22):4719–4729. https://doi.org/10.1242/jcs.03252
doi: 10.1242/jcs.03252 pubmed: 17077121
Becker RO, Chapin S, Sherry R (1974) Regeneration of the ventricular myocardium in amphibians. Nature 248(5444):145–147. https://doi.org/10.1038/248145a0
doi: 10.1038/248145a0 pubmed: 4818918
Lutgens E, Daemen MJAP, de Muinck ED, Debets J, Leenders P, Smits JFM (1999) Chronic myocardial infarction in the mouse: cardiac structural and functional change1. Cardiovasc Res 41(3):586–593. https://doi.org/10.1016/s0008-6363(98)00216-8
doi: 10.1016/s0008-6363(98)00216-8 pubmed: 10435030
Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331(6020):1078–1080. https://doi.org/10.1126/science.1200708
doi: 10.1126/science.1200708 pubmed: 21350179 pmcid: 3099478
Mahmoud AI, Porrello ER, Kimura W, Olson EN, Sadek HA (2014) Surgical models for cardiac regeneration in neonatal mice. Nat Protoc 9(2):305–311. https://doi.org/10.1038/nprot.2014.021
doi: 10.1038/nprot.2014.021 pubmed: 24434799 pmcid: 3977725
Li Y, He L, Huang X, Bhaloo SI, Zhao H, Zhang S, Pu W, Tian X, Li Y, Liu Q, Yu W, Zhang L, Liu X, Liu K, Tang J, Zhang H, Cai D, Ralf AH, Xu Q, Lui KO, Zhou B (2018) Genetic lineage tracing of nonmyocyte population by dual recombinases. Circulation 138(8):793–805. https://doi.org/10.1161/CIRCULATIONAHA.118.034250
doi: 10.1161/CIRCULATIONAHA.118.034250 pubmed: 29700121
Alkass K, Panula J, Westman M, Wu T-D, Guerquin-Kern J-L, Bergmann O (2015) No evidence for cardiomyocyte number expansion in preadolescent mice. Cell 163(4):1026–1036. https://doi.org/10.1016/j.cell.2015.10.035
doi: 10.1016/j.cell.2015.10.035 pubmed: 26544945
Derks W, Bergmann O (2020) Polyploidy in cardiomyocytes. Circ Res 126(4):552–565. https://doi.org/10.1161/CIRCRESAHA.119.315408
doi: 10.1161/CIRCRESAHA.119.315408 pubmed: 32078450
Mohamed TMA, Ang Y-S, Radzinsky E, Zhou P, Huang Y, Elfenbein A, Foley A, Magnitsky S, Srivastava D (2018) Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell 173(1):104–116. e112. https://doi.org/10.1016/j.cell.2018.02.014
doi: 10.1016/j.cell.2018.02.014 pubmed: 29502971 pmcid: 5973786
Alvarez R Jr, Wang BJ, Quijada PJ, Avitabile D, Ho T, Shaitrit M, Chavarria M, Firouzi F, Ebeid D, Monsanto MM, Navarrete N, Moshref M, Siddiqi S, Broughton KM, Bailey BA, Gude NA, Sussman MA (2019) Cardiomyocyte cell cycle dynamics and proliferation revealed through cardiac-specific transgenesis of fluorescent ubiquitinated cell cycle indicator (FUCCI). J Mol Cell Cardiol 127:154–164. https://doi.org/10.1016/j.yjmcc.2018.12.007
doi: 10.1016/j.yjmcc.2018.12.007 pubmed: 30571978
Uribe V, Ramadass R, Dogra D, Rasouli SJ, Gunawan F, Nakajima H, Chiba A, Reischauer S, Mochizuki N, Stainier DYR (2018) In vivo analysis of cardiomyocyte proliferation during trabeculation. Development 145(14):dev164194. https://doi.org/10.1242/dev.164194
doi: 10.1242/dev.164194 pubmed: 30061167
Choi W-Y, Gemberling M, Wang J, Holdway JE, Shen M-C, Karlstrom RO, Poss KD (2013) In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration. Development 140(3):660–666. https://doi.org/10.1242/dev.088526
doi: 10.1242/dev.088526 pubmed: 23293297 pmcid: 3561784
Patterson M, Barske L, Van Handel B, Rau CD, Gan P, Sharma A, Parikh S, Denholtz M, Huang Y, Yamaguchi Y, Shen H, Allayee H, Crump JG, Force TI, Lien CL, Makita T, Lusis AJ, Kumar SR, Sucov HM (2017) Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat Genet 49(9):1346–1353. https://doi.org/10.1038/ng.3929
doi: 10.1038/ng.3929 pubmed: 28783163 pmcid: 5736145
Gonzalez-Rosa JM, Sharpe M, Field D, Soonpaa MH, Field LJ, Burns CE, Burns CG (2018) Myocardial polyploidization creates a barrier to heart regeneration in Zebrafish. Dev Cell 44(4):433–446. e437. https://doi.org/10.1016/j.devcel.2018.01.021
doi: 10.1016/j.devcel.2018.01.021 pubmed: 29486195 pmcid: 5830170
Han L, Choudhury S, Mich-Basso JD, Ammanamanchi N, Ganapathy B, Suresh S, Khaladkar M, Singh J, Maehr R, Zuppo DA, Kim J, Eberwine JH, Wyman SK, Wu YL, Kuhn B (2020) Lamin B2 levels regulate polyploidization of cardiomyocyte nuclei and myocardial regeneration. Dev Cell 53(1):42–59.e11. https://doi.org/10.1016/j.devcel.2020.01.030
doi: 10.1016/j.devcel.2020.01.030 pubmed: 32109383 pmcid: 7346764
Kolk MV, Meyberg D, Deuse T, Tang-Quan KR, Robbins RC, Reichenspurner H, Schrepfer S (2009) LAD-ligation: a murine model of myocardial infarction. J Vis Exp (32). https://doi.org/10.3791/1438
Reichert K, Colantuono B, McCormack I, Rodrigues F, Pavlov V, Abid MR (2017) Murine Left Anterior Descending (LAD) coronary artery ligation: an improved and simplified model for myocardial infarction. J Vis Exp 122:55353. https://doi.org/10.3791/55353
doi: 10.3791/55353
Lugrin J, Parapanov R, Krueger T, Liaudet L (2019) Murine myocardial infarction model using permanent ligation of left anterior descending coronary artery. J Vis Exp (150). https://doi.org/10.3791/59591

Auteurs

Emma B Brandt (EB)

Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.

Ahmed I Mahmoud (AI)

Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA. aimahmoud@wisc.edu.
University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA. aimahmoud@wisc.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH