Quantifying Cardiomyocyte Proliferation and Nucleation to Assess Mammalian Cardiac Regeneration.
Cardiac regeneration
Cardiomyocyte nucleation
Cardiomyocyte proliferation
Immunohistochemistry
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2022
2022
Historique:
entrez:
26
5
2022
pubmed:
27
5
2022
medline:
31
5
2022
Statut:
ppublish
Résumé
Neonatal mice display a remarkable ability to regenerate their heart following an injury during the first week of life. A key facet of successful cardiac regeneration is the proliferation of cardiomyocytes to replace the lost cells. Stimulating cardiomyocyte proliferation in the adult heart is a very promising approach to restore cardiac structure and function following injury. Here, we outline our approach to assess cardiomyocyte proliferation following a myocardial injury via the cell cycle markers phospho-histone H3 and Aurora B. We additionally discuss how we assess successful regeneration using wheat germ agglutinin to measure cardiomyocyte size, nuclear staining to quantify cardiomyocyte nucleation, and Trichrome staining to identify myocardial regeneration and scarring in the myocardium.
Identifiants
pubmed: 35618910
doi: 10.1007/978-1-0716-2261-2_16
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
243-253Informations de copyright
© 2022. Springer Science+Business Media, LLC, part of Springer Nature.
Références
Jopling C, Sleep E, Raya M, Marti M, Raya A, Izpisua Belmonte JC (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464(7288):606–609. https://doi.org/10.1038/nature08899
doi: 10.1038/nature08899
pubmed: 20336145
pmcid: 2846535
Laube F, Heister M, Scholz C, Borchardt T, Braun T (2006) Re-programming of newt cardiomyocytes is induced by tissue regeneration. J Cell Sci 119(22):4719–4729. https://doi.org/10.1242/jcs.03252
doi: 10.1242/jcs.03252
pubmed: 17077121
Becker RO, Chapin S, Sherry R (1974) Regeneration of the ventricular myocardium in amphibians. Nature 248(5444):145–147. https://doi.org/10.1038/248145a0
doi: 10.1038/248145a0
pubmed: 4818918
Lutgens E, Daemen MJAP, de Muinck ED, Debets J, Leenders P, Smits JFM (1999) Chronic myocardial infarction in the mouse: cardiac structural and functional change1. Cardiovasc Res 41(3):586–593. https://doi.org/10.1016/s0008-6363(98)00216-8
doi: 10.1016/s0008-6363(98)00216-8
pubmed: 10435030
Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331(6020):1078–1080. https://doi.org/10.1126/science.1200708
doi: 10.1126/science.1200708
pubmed: 21350179
pmcid: 3099478
Mahmoud AI, Porrello ER, Kimura W, Olson EN, Sadek HA (2014) Surgical models for cardiac regeneration in neonatal mice. Nat Protoc 9(2):305–311. https://doi.org/10.1038/nprot.2014.021
doi: 10.1038/nprot.2014.021
pubmed: 24434799
pmcid: 3977725
Li Y, He L, Huang X, Bhaloo SI, Zhao H, Zhang S, Pu W, Tian X, Li Y, Liu Q, Yu W, Zhang L, Liu X, Liu K, Tang J, Zhang H, Cai D, Ralf AH, Xu Q, Lui KO, Zhou B (2018) Genetic lineage tracing of nonmyocyte population by dual recombinases. Circulation 138(8):793–805. https://doi.org/10.1161/CIRCULATIONAHA.118.034250
doi: 10.1161/CIRCULATIONAHA.118.034250
pubmed: 29700121
Alkass K, Panula J, Westman M, Wu T-D, Guerquin-Kern J-L, Bergmann O (2015) No evidence for cardiomyocyte number expansion in preadolescent mice. Cell 163(4):1026–1036. https://doi.org/10.1016/j.cell.2015.10.035
doi: 10.1016/j.cell.2015.10.035
pubmed: 26544945
Derks W, Bergmann O (2020) Polyploidy in cardiomyocytes. Circ Res 126(4):552–565. https://doi.org/10.1161/CIRCRESAHA.119.315408
doi: 10.1161/CIRCRESAHA.119.315408
pubmed: 32078450
Mohamed TMA, Ang Y-S, Radzinsky E, Zhou P, Huang Y, Elfenbein A, Foley A, Magnitsky S, Srivastava D (2018) Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell 173(1):104–116. e112. https://doi.org/10.1016/j.cell.2018.02.014
doi: 10.1016/j.cell.2018.02.014
pubmed: 29502971
pmcid: 5973786
Alvarez R Jr, Wang BJ, Quijada PJ, Avitabile D, Ho T, Shaitrit M, Chavarria M, Firouzi F, Ebeid D, Monsanto MM, Navarrete N, Moshref M, Siddiqi S, Broughton KM, Bailey BA, Gude NA, Sussman MA (2019) Cardiomyocyte cell cycle dynamics and proliferation revealed through cardiac-specific transgenesis of fluorescent ubiquitinated cell cycle indicator (FUCCI). J Mol Cell Cardiol 127:154–164. https://doi.org/10.1016/j.yjmcc.2018.12.007
doi: 10.1016/j.yjmcc.2018.12.007
pubmed: 30571978
Uribe V, Ramadass R, Dogra D, Rasouli SJ, Gunawan F, Nakajima H, Chiba A, Reischauer S, Mochizuki N, Stainier DYR (2018) In vivo analysis of cardiomyocyte proliferation during trabeculation. Development 145(14):dev164194. https://doi.org/10.1242/dev.164194
doi: 10.1242/dev.164194
pubmed: 30061167
Choi W-Y, Gemberling M, Wang J, Holdway JE, Shen M-C, Karlstrom RO, Poss KD (2013) In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration. Development 140(3):660–666. https://doi.org/10.1242/dev.088526
doi: 10.1242/dev.088526
pubmed: 23293297
pmcid: 3561784
Patterson M, Barske L, Van Handel B, Rau CD, Gan P, Sharma A, Parikh S, Denholtz M, Huang Y, Yamaguchi Y, Shen H, Allayee H, Crump JG, Force TI, Lien CL, Makita T, Lusis AJ, Kumar SR, Sucov HM (2017) Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat Genet 49(9):1346–1353. https://doi.org/10.1038/ng.3929
doi: 10.1038/ng.3929
pubmed: 28783163
pmcid: 5736145
Gonzalez-Rosa JM, Sharpe M, Field D, Soonpaa MH, Field LJ, Burns CE, Burns CG (2018) Myocardial polyploidization creates a barrier to heart regeneration in Zebrafish. Dev Cell 44(4):433–446. e437. https://doi.org/10.1016/j.devcel.2018.01.021
doi: 10.1016/j.devcel.2018.01.021
pubmed: 29486195
pmcid: 5830170
Han L, Choudhury S, Mich-Basso JD, Ammanamanchi N, Ganapathy B, Suresh S, Khaladkar M, Singh J, Maehr R, Zuppo DA, Kim J, Eberwine JH, Wyman SK, Wu YL, Kuhn B (2020) Lamin B2 levels regulate polyploidization of cardiomyocyte nuclei and myocardial regeneration. Dev Cell 53(1):42–59.e11. https://doi.org/10.1016/j.devcel.2020.01.030
doi: 10.1016/j.devcel.2020.01.030
pubmed: 32109383
pmcid: 7346764
Kolk MV, Meyberg D, Deuse T, Tang-Quan KR, Robbins RC, Reichenspurner H, Schrepfer S (2009) LAD-ligation: a murine model of myocardial infarction. J Vis Exp (32). https://doi.org/10.3791/1438
Reichert K, Colantuono B, McCormack I, Rodrigues F, Pavlov V, Abid MR (2017) Murine Left Anterior Descending (LAD) coronary artery ligation: an improved and simplified model for myocardial infarction. J Vis Exp 122:55353. https://doi.org/10.3791/55353
doi: 10.3791/55353
Lugrin J, Parapanov R, Krueger T, Liaudet L (2019) Murine myocardial infarction model using permanent ligation of left anterior descending coronary artery. J Vis Exp (150). https://doi.org/10.3791/59591