The mechanism for thermal-enhanced chaperone-like activity of α-crystallin against UV irradiation-induced aggregation of γD-crystallin.
Journal
Biophysical journal
ISSN: 1542-0086
Titre abrégé: Biophys J
Pays: United States
ID NLM: 0370626
Informations de publication
Date de publication:
21 06 2022
21 06 2022
Historique:
received:
25
02
2022
revised:
11
05
2022
accepted:
20
05
2022
pubmed:
28
5
2022
medline:
25
6
2022
entrez:
27
5
2022
Statut:
ppublish
Résumé
Exposure to solar UV irradiation damages γ-crystallin, leading to cataract formation via aggregation. α-Crystallin, as a small heat shock protein, efficiently suppresses this irreversible aggregation by selectively binding the denatured γ-crystallin monomer. In this study, liquid chromatography tandem mass spectrometry was used to evaluate UV-325 nm irradiation-induced photodamage of human γD-crystallin in the presence of bovine α-crystallin, atomic force microscope (AFM) and dynamic light scattering (DLS) techniques were used to detect the quaternary structure changes of the α-crystallin oligomer, and Fourier transform infrared spectroscopy and temperature-jump nanosecond time-resolved IR absorbance difference spectroscopy were used to probe the secondary structure changes of bovine α-crystallin. We find that the thermal-induced subunit dissociation of the α-crystallin oligomer involves the breaking of hydrogen bonds at the dimeric interface, leading to three different spectral components at varied temperature regions as resolved from temperature-dependent IR spectra. Under UV-325 nm irradiation, unfolded γD-crystallin binds to the dissociated α-crystallin subunit to form an αγ-complex, then follows the reassociation of the αγ-complex to the partially dissociated α-crystallin oligomer. This prevents the aggregation of denatured γD-crystallin. The formation of the γD-bound α-crystallin oligomer is further confirmed by AFM and DLS analysis, which reveals an obvious size expansion in the reassociated αγ-oligomers. In addition, UV-325 nm irradiation causes a peptide bond cleavage of γD-crystallin at Ala158 in the presence of α-crystallin. Our results suggest a very effective protection mechanism for subunits dissociated from α-crystallin oligomers against UV irradiation-induced aggregation of γD-crystallin, at the expense of a loss of a short C-terminal peptide in γD-crystallin.
Identifiants
pubmed: 35619565
pii: S0006-3495(22)00425-8
doi: 10.1016/j.bpj.2022.05.032
pmc: PMC9279354
pii:
doi:
Substances chimiques
Molecular Chaperones
0
alpha-Crystallins
0
gamma-Crystallins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2233-2250Informations de copyright
Copyright © 2022 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of interests The authors declare no competing interests.
Références
Exp Eye Res. 2019 May;182:10-18
pubmed: 30849387
Biochemistry. 2005 Nov 15;44(45):14854-69
pubmed: 16274233
J Protein Chem. 1997 May;16(4):283-9
pubmed: 9188067
J Am Chem Soc. 2009 Nov 25;131(46):16751-7
pubmed: 19919143
Trends Mol Med. 2012 May;18(5):273-82
pubmed: 22520268
Exp Eye Res. 1997 Aug;65(2):255-66
pubmed: 9268594
Biochemistry. 2013 Sep 10;52(36):6169-81
pubmed: 23957864
Langmuir. 2009 Aug 18;25(16):9384-91
pubmed: 19382785
J Biol Chem. 2004 Mar 19;279(12):11222-8
pubmed: 14722093
Hum Mutat. 2011 Jan;32(1):E1939-47
pubmed: 21031598
IUBMB Life. 2006 Nov;58(11):632-41
pubmed: 17085382
J Am Chem Soc. 2001 Dec 5;123(48):12048-58
pubmed: 11724613
J Mol Biol. 2003 May 16;328(5):1137-47
pubmed: 12729747
J Am Chem Soc. 2015 May 13;137(18):5990-9
pubmed: 25909499
Biochem Biophys Res Commun. 1997 Aug 18;237(2):277-82
pubmed: 9268700
FEBS Lett. 1995 Aug 7;369(2-3):321-5
pubmed: 7649280
J Pharm Sci. 2007 Jun;96(6):1468-79
pubmed: 17230445
Int J Biol Macromol. 2018 Oct 1;117:1289-1298
pubmed: 29870813
J Biol Chem. 1994 Nov 4;269(44):27264-8
pubmed: 7961635
J Biol Chem. 1998 Jun 19;273(25):15474-8
pubmed: 9624133
J Biol Chem. 1991 Oct 25;266(30):20079-84
pubmed: 1939070
Microbiol Mol Biol Rev. 2002 Mar;66(1):64-93; table of contents
pubmed: 11875128
Biochim Biophys Acta. 2016 Jan;1860(1 Pt B):149-66
pubmed: 26116912
Q Rev Biophys. 2002 Nov;35(4):369-430
pubmed: 12621861
J Phys Chem B. 2019 Sep 19;123(37):7771-7776
pubmed: 31448608
J Phys Chem B. 2012 Aug 16;116(32):9796-802
pubmed: 22816990
Protein Sci. 2013 Apr;22(4):367-80
pubmed: 23389822
Biochem Biophys Res Commun. 1997 Oct 9;239(1):217-22
pubmed: 9345298
EMBO J. 1999 Dec 1;18(23):6744-51
pubmed: 10581247
Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10449-53
pubmed: 1438232
Biochemistry. 2008 Apr 1;47(13):4071-81
pubmed: 18321068
J Mol Biol. 2009 Feb 6;385(5):1481-97
pubmed: 19041879
Biochemistry. 2000 Apr 18;39(15):4483-92
pubmed: 10757997
Biochemistry. 2009 May 5;48(17):3708-16
pubmed: 19358562
Invest Ophthalmol Vis Sci. 2006 Jul;47(7):2990-6
pubmed: 16799044
Exp Eye Res. 2003 Feb;76(2):145-53
pubmed: 12565801
Biochem Biophys Res Commun. 2000 Sep 24;276(2):619-25
pubmed: 11027522
Angew Chem Int Ed Engl. 1999 Mar 15;38(6):736-749
pubmed: 29711793
Biochim Biophys Acta. 2016 Jan;1860(1 Pt B):211-21
pubmed: 26073614
Prog Biophys Mol Biol. 1993;59(1):23-56
pubmed: 8419985
Exp Eye Res. 2010 Nov;91(5):691-9
pubmed: 20732317
Int J Biol Macromol. 2019 Nov 1;140:736-748
pubmed: 31445149
FEBS Lett. 1995 May 29;365(2-3):133-6
pubmed: 7781765
Nat Struct Mol Biol. 2010 Sep;17(9):1037-42
pubmed: 20802487
Sci Rep. 2014 Apr 29;4:4834
pubmed: 24776652
Mol Cell Biochem. 2001 Apr;220(1-2):127-33
pubmed: 11451372
Biochem J. 1971 Sep;124(2):337-43
pubmed: 5158502
Biochim Biophys Acta. 2007 Sep;1767(9):1073-101
pubmed: 17692815
Sci China Chem. 2020 Aug;63(8):1121-1133
pubmed: 33163014
Q Rev Biophys. 1997 Nov;30(4):365-429
pubmed: 9634652
J Biol Chem. 2019 Feb 8;294(6):2121-2132
pubmed: 30385502
J Biol Chem. 1999 Nov 19;274(47):33209-12
pubmed: 10559193
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20491-6
pubmed: 22143763
PLoS One. 2012;7(3):e34438
pubmed: 22479631
J Biol Chem. 1998 Apr 10;273(15):8965-70
pubmed: 9535881
J Mol Biol. 1999 Jun 4;289(2):397-411
pubmed: 10366513
Protein Sci. 2005 Mar;14(3):569-81
pubmed: 15722442
Proteins. 2010 Aug 15;78(11):2546-53
pubmed: 20535821
Nat Struct Mol Biol. 2019 Dec;26(12):1141-1150
pubmed: 31792453
Eur J Biochem. 2000 Apr;267(7):1923-32
pubmed: 10727931
Exp Eye Res. 2018 Sep;174:185-195
pubmed: 29782825
Exp Eye Res. 1996 Feb;62(2):141-8
pubmed: 8698074
Annu Rev Biophys Biomol Struct. 2000;29:327-59
pubmed: 10940252
Protein Sci. 2016 Jun;25(6):1115-28
pubmed: 26991007
Protein Sci. 2004 Aug;13(8):2223-35
pubmed: 15273315
Exp Eye Res. 2009 Feb;88(2):190-4
pubmed: 18703051
Biochemistry. 2006 Sep 26;45(38):11552-63
pubmed: 16981715
Graefes Arch Clin Exp Ophthalmol. 1999 Feb;237(2):157-60
pubmed: 9987633
Food Res Int. 2017 Jun;96:132-153
pubmed: 28528093
J Mol Biol. 2004 Oct 15;343(2):445-55
pubmed: 15451672
Rev Sci Instrum. 2015 May;86(5):053105
pubmed: 26026512
Chembiochem. 2013 Nov 25;14(17):2362-70
pubmed: 24222572
Prog Biophys Mol Biol. 2004 Nov;86(3):407-85
pubmed: 15302206
Ann Occup Hyg. 1991 Feb;35(1):1-12
pubmed: 2035949
J Biol Chem. 1996 Nov 8;271(45):28558-66
pubmed: 8910485
Biochim Biophys Acta Gen Subj. 2020 Mar;1864(3):129502
pubmed: 31812542
J Biol Chem. 2000 Jan 14;275(2):1035-42
pubmed: 10625643