PRMT5-mediated RNF4 methylation promotes therapeutic resistance of APL cells to As
Animals
Antineoplastic Agents
/ pharmacology
Arsenic Trioxide
/ pharmacology
Cell Line, Tumor
/ drug effects
Drug Resistance, Neoplasm
/ genetics
Humans
Isoquinolines
/ pharmacology
Leukemia, Promyelocytic, Acute
/ drug therapy
Methylation
Mice
Nuclear Proteins
/ genetics
Oncogene Proteins, Fusion
/ genetics
Protein-Arginine N-Methyltransferases
/ antagonists & inhibitors
Pyrimidines
/ pharmacology
Transcription Factors
/ genetics
Ubiquitination
Acute promyelocytic leukemia
Methylation
PML-RARα
PRMT5
RNF4
Ubiquitination
Journal
Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402
Informations de publication
Date de publication:
27 May 2022
27 May 2022
Historique:
received:
25
01
2022
accepted:
08
05
2022
revised:
23
04
2022
entrez:
27
5
2022
pubmed:
28
5
2022
medline:
1
6
2022
Statut:
epublish
Résumé
Acute promyelocytic leukemia (APL) is a hematological malignancy driven by the oncoprotein PML-RARα, which can be treated with arsenic trioxide (As
Identifiants
pubmed: 35622143
doi: 10.1007/s00018-022-04358-3
pii: 10.1007/s00018-022-04358-3
doi:
Substances chimiques
Antineoplastic Agents
0
GSK3235025
0
Isoquinolines
0
Nuclear Proteins
0
Oncogene Proteins, Fusion
0
Pyrimidines
0
RNF4 protein, human
0
Transcription Factors
0
promyelocytic leukemia-retinoic acid receptor alpha fusion oncoprotein
0
PRMT5 protein, human
EC 2.1.1.319
Protein-Arginine N-Methyltransferases
EC 2.1.1.319
Arsenic Trioxide
S7V92P67HO
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
319Subventions
Organisme : National Natural Science Foundation of China
ID : 82130081
Organisme : National Natural Science Foundation of China
ID : 81730080
Organisme : Natural Science Foundation of Beijing Municipality
ID : 5212008
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
de The H, Chen Z (2010) Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat Rev Cancer 10(11):775–783
pubmed: 20966922
doi: 10.1038/nrc2943
Burnett AK, Russell NH, Hills RK, Bowen D, Kell J, Knapper S et al (2015) Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): results of a randomised, controlled, phase 3 trial. Lancet Oncol 16(13):1295–1305
pubmed: 26384238
doi: 10.1016/S1470-2045(15)00193-X
Strocchio L, Gurnari C, Santoro N, Putti MC, Micalizzi C, Zecca M et al (2019) Arsenic trioxide and all-trans retinoic acid treatment for childhood acute promyelocytic leukaemia. Br J Haematol 185(2):360–363
pubmed: 30028005
doi: 10.1111/bjh.15507
Lallemand-Breitenbach V, de The H (2010) PML nuclear bodies. Cold Spring Harb Perspect Biol 2(5):a000661
pubmed: 20452955
pmcid: 2857171
doi: 10.1101/cshperspect.a000661
Kwok C, Zeisig BB, Dong S, So CW (2006) Forced homo-oligomerization of RARalpha leads to transformation of primary hematopoietic cells. Cancer Cell 9(2):95–108
pubmed: 16473277
doi: 10.1016/j.ccr.2006.01.005
Martens JH, Brinkman AB, Simmer F, Francoijs KJ, Nebbioso A, Ferrara F et al (2010) PML-RARalpha/RXR alters the epigenetic landscape in acute promyelocytic leukemia. Cancer Cell 17(2):173–185
pubmed: 20159609
doi: 10.1016/j.ccr.2009.12.042
Kayser S, Schlenk RF, Platzbecker U (2018) Management of patients with acute promyelocytic leukemia. Leukemia 32(6):1277–1294
pubmed: 29743722
doi: 10.1038/s41375-018-0139-4
Coombs CC, Tavakkoli M, Tallman MS (2015) Acute promyelocytic leukemia: where did we start, where are we now, and the future. Blood Cancer J 5:e304
pubmed: 25885425
pmcid: 4450325
doi: 10.1038/bcj.2015.25
Lo-Coco F, Avvisati G, Vignetti M, Thiede C, Orlando SM, Iacobelli S et al (2013) Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med 369(2):111–121
pubmed: 23841729
doi: 10.1056/NEJMoa1300874
Lallemand-Breitenbach V, Zhu J, Chen Z, de The H (2012) Curing APL through PML/RARA degradation by As2O3. Trends Mol Med 18(1):36–42
pubmed: 22056243
doi: 10.1016/j.molmed.2011.10.001
Dos Santos GA, Kats L, Pandolfi PP (2013) Synergy against PML-RARa: targeting transcription, proteolysis, differentiation, and self-renewal in acute promyelocytic leukemia. J Exp Med 210(13):2793–2802
pubmed: 24344243
pmcid: 3865469
doi: 10.1084/jem.20131121
Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG et al (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10(5):538–546
pubmed: 18408734
doi: 10.1038/ncb1716
Lallemand-Breitenbach V, Jeanne M, Benhenda S, Nasr R, Lei M, Peres L et al (2008) Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol 10(5):547–555
pubmed: 18408733
doi: 10.1038/ncb1717
Lu Y, Yan JS, Xia L, Qin K, Yin QQ, Xu HT et al (2019) 2-Bromopalmitate targets retinoic acid receptor alpha and overcomes all-trans retinoic acid resistance of acute promyelocytic leukemia. Haematologica 104(1):102–112
pubmed: 30076181
pmcid: 6312026
doi: 10.3324/haematol.2018.191916
Gaut D, Sasine J, Schiller G (2018) Secondary clonal hematologic neoplasia following successful therapy for acute promyelocytic leukemia (APL): a report of two cases and review of the literature. Leuk Res Rep 9:65–71
pubmed: 29892552
pmcid: 5993360
Lehmann-Che J, Bally C, de The H (2014) Resistance to therapy in acute promyelocytic leukemia. N Engl J Med 371(12):1170–1172
pubmed: 25229938
doi: 10.1056/NEJMc1409040
Zhang X, Pan J (2017) Resistance to arsenic trioxide and retinoic acid therapy in acute promyelocytic leukemia. Ann Hematol 96(4):707–708
pubmed: 28154895
doi: 10.1007/s00277-017-2923-z
Zhu HH, Qin YZ, Huang XJ (2014) Resistance to arsenic therapy in acute promyelocytic leukemia. N Engl J Med 370(19):1864–1866
pubmed: 24806185
doi: 10.1056/NEJMc1316382
Smith E, Zhou W, Shindiapina P, Sif S, Li C, Baiocchi RA (2018) Recent advances in targeting protein arginine methyltransferase enzymes in cancer therapy. Expert Opin Ther Targets 22(6):527–545
pubmed: 29781349
pmcid: 6311705
doi: 10.1080/14728222.2018.1474203
Jarrold J, Davies CC (2019) PRMTs and arginine methylation: cancer’s best-kept secret? Trends Mol Med 25(11):993–1009
pubmed: 31230909
doi: 10.1016/j.molmed.2019.05.007
Pal S, Sif S (2007) Interplay between chromatin remodelers and protein arginine methyltransferases. J Cell Physiol 213(2):306–315
pubmed: 17708529
doi: 10.1002/jcp.21180
Blanc RS, Richard S (2017) Arginine methylation: the coming of age. Mol Cell 65(1):8–24
pubmed: 28061334
doi: 10.1016/j.molcel.2016.11.003
Yan F, Alinari L, Lustberg ME, Martin LK, Cordero-Nieves HM, Banasavadi-Siddegowda Y et al (2014) Genetic validation of the protein arginine methyltransferase PRMT5 as a candidate therapeutic target in glioblastoma. Cancer Res 74(6):1752–1765
pubmed: 24453002
pmcid: 3959215
doi: 10.1158/0008-5472.CAN-13-0884
Hu D, Gur M, Zhou Z, Gamper A, Hung MC, Fujita N et al (2015) Interplay between arginine methylation and ubiquitylation regulates KLF4-mediated genome stability and carcinogenesis. Nat Commun 6:8419
pubmed: 26420673
doi: 10.1038/ncomms9419
Kanda M, Shimizu D, Fujii T, Tanaka H, Shibata M, Iwata N et al (2016) Protein arginine methyltransferase 5 is associated with malignant phenotype and peritoneal metastasis in gastric cancer. Int J Oncol 49(3):1195–1202
pubmed: 27315569
doi: 10.3892/ijo.2016.3584
Jin Y, Zhou J, Xu F, Jin B, Cui L, Wang Y et al (2016) Targeting methyltransferase PRMT5 eliminates leukemia stem cells in chronic myelogenous leukemia. J Clin Investig 126(10):3961–3980
pubmed: 27643437
pmcid: 5096815
doi: 10.1172/JCI85239
Li K, Wang F, Cao WB, Lv XX, Hua F, Cui B et al (2017) TRIB3 Promotes APL progression through stabilization of the oncoprotein PML-RARalpha and inhibition of p53-mediated senescence. Cancer Cell 31(5):697-710 e7
pubmed: 28486108
doi: 10.1016/j.ccell.2017.04.006
Li T, Guan J, Huang Z, Hu X, Zheng X (2014) RNF168-mediated H2A neddylation antagonizes ubiquitylation of H2A and regulates DNA damage repair. J Cell Sci 127(Pt 10):2238–2248
pubmed: 24634510
Zhu D, Xu R, Huang X, Tang Z, Tian Y, Zhang J et al (2021) Deubiquitinating enzyme OTUB1 promotes cancer cell immunosuppression via preventing ER-associated degradation of immune checkpoint protein PD-L1. Cell Death Differ 28(6):1773–1789
pubmed: 33328570
doi: 10.1038/s41418-020-00700-z
de The H, Pandolfi PP, Chen Z (2017) Acute promyelocytic leukemia: a paradigm for oncoprotein-targeted cure. Cancer Cell 32(5):552–560
pubmed: 29136503
doi: 10.1016/j.ccell.2017.10.002
Cicconi L, Fenaux P, Kantarjian H, Tallman M, Sanz MA, Lo-Coco F (2018) Molecular remission as a therapeutic objective in acute promyelocytic leukemia. Leukemia 32(8):1671–1678
pubmed: 30026570
doi: 10.1038/s41375-018-0219-5
Yang Y, Bedford MT (2013) Protein arginine methyltransferases and cancer. Nat Rev Cancer 13(1):37–50
pubmed: 23235912
doi: 10.1038/nrc3409
Nasr R, Lallemand-Breitenbach V, Zhu J, Guillemin MC, de The H (2009) Therapy-induced PML/RARA proteolysis and acute promyelocytic leukemia cure. Clin Cancer Res 15(20):6321–6326
pubmed: 19808868
doi: 10.1158/1078-0432.CCR-09-0209
Karkhanis V, Hu YJ, Baiocchi RA, Imbalzano AN, Sif S (2011) Versatility of PRMT5-induced methylation in growth control and development. Trends Biochem Sci 36(12):633–641
pubmed: 21975038
pmcid: 3225484
doi: 10.1016/j.tibs.2011.09.001
Maimaitiyiming Y, Wang QQ, Yang C, Ogra Y, Lou YJ, Smith CA et al (2021) Hyperthermia selectively destabilizes oncogenic fusion proteins. Blood Cancer Discov 2(4):388–401
pubmed: 34661159
pmcid: 8513904
doi: 10.1158/2643-3230.BCD-20-0188
Zhao S, Shi P, Zhong Q, Shao S, Huang Y, Sun Y et al (2019) Identification of a point mutation PML(S214L)-RARalpha that alters PML body organization, dynamics and SUMOylation. Biochem Biophys Res Commun 511(3):518–523
pubmed: 30824184
doi: 10.1016/j.bbrc.2019.02.101
Bai DM, Zheng XF (2017) PML-RARA mutations confer varying arsenic trioxide resistance. Protein Cell 8(4):296–301
pubmed: 28028657
doi: 10.1007/s13238-016-0356-4
Jo S, Lee YL, Kim S, Lee H, Chung H (2016) PCGF2 negatively regulates arsenic trioxide-induced PML-RARA protein degradation via UBE2I inhibition in NB4 cells. Biochim Biophys Acta 1863(7 Pt A):1499–1509
pubmed: 27030546
doi: 10.1016/j.bbamcr.2016.03.019
Li ASM, Li F, Eram MS, Bolotokova A, Dela Sena CC, Vedadi M (2020) Chemical probes for protein arginine methyltransferases. Methods 175:30–43
pubmed: 31809836
doi: 10.1016/j.ymeth.2019.11.017
Mei M, Zhang R, Zhou ZW, Ying Z, Wang J, Zhang H et al (2019) PRMT5-mediated H4R3sme2 confers cell differentiation in pediatric B-cell precursor acute lymphoblastic leukemia. Clin Cancer Res 25(8):2633–2643
pubmed: 30635341
doi: 10.1158/1078-0432.CCR-18-2342
Tarighat SS, Santhanam R, Frankhouser D, Radomska HS, Lai H, Anghelina M et al (2016) The dual epigenetic role of PRMT5 in acute myeloid leukemia: gene activation and repression via histone arginine methylation. Leukemia 30(4):789–799
pubmed: 26536822
doi: 10.1038/leu.2015.308
Radzisheuskaya A, Shliaha PV, Grinev V, Lorenzini E, Kovalchuk S, Shlyueva D et al (2019) PRMT5 methylome profiling uncovers a direct link to splicing regulation in acute myeloid leukemia. Nat Struct Mol Biol 26(11):999–1012
pubmed: 31611688
pmcid: 6858565
doi: 10.1038/s41594-019-0313-z
Zhu F, Rui L (2019) PRMT5 in gene regulation and hematologic malignancies. Genes Dis 6(3):247–257
pubmed: 32042864
pmcid: 6997592
doi: 10.1016/j.gendis.2019.06.002
Chan-Penebre E, Kuplast KG, Majer CR, Boriack-Sjodin PA, Wigle TJ, Johnston LD et al (2015) A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat Chem Biol 11(6):432–437
pubmed: 25915199
doi: 10.1038/nchembio.1810