Seizure classification with selected frequency bands and EEG montages: a Natural Language Processing approach.

Classification Electroencephalography Epileptic seizure Frequency bands selection Natural Language Processing Seizure

Journal

Brain informatics
ISSN: 2198-4018
Titre abrégé: Brain Inform
Pays: Germany
ID NLM: 101673751

Informations de publication

Date de publication:
27 May 2022
Historique:
received: 04 01 2022
accepted: 17 04 2022
entrez: 27 5 2022
pubmed: 28 5 2022
medline: 28 5 2022
Statut: epublish

Résumé

Individualized treatment is crucial for epileptic patients with different types of seizures. The differences among patients impact the drug choice as well as the surgery procedure. With the advance in machine learning, automatic seizure detection can ease the manual time-consuming and labor-intensive procedure for diagnose seizure in the clinical setting. In this paper, we present an electroencephalography (EEG) frequency bands (sub-bands) and montages selection (sub-zones) method for classifier training that exploits Natural Language Processing from individual patients' clinical report. The proposed approach is targeting for individualized treatment. We integrated the prior knowledge from patient's reports into the classifier-building process, mimicking the authentic thinking process of experienced neurologist's when diagnosing seizure using EEG. The keywords from clinical documents are mapped to the EEG data in terms of frequency bands and scalp EEG electrodes. The data of experiments are from the Temple University Hospital EEG seizure corpus, and the dataset is divided based on each group of patients with same seizure type and same recording electrode references. The classifier includes Random Forest, Support Vector Machine and Multi-Layer Perceptron. The classification performance indicates that competitive results can be achieve with a small portion of EEG the data. Using the sub-zones selection for Generalized Seizures (GNSZ) on all three electrodes, data are reduced by nearly 50% while the performance metrics remain at the same level with the whole frequency and zones. Moreover, when selecting by sub-zones and sub-bands together for GNSZ with Linked Ears reference, the data range reduced to 0.3% of whole range, and the performance deviates less than 3% from the results with whole range of data. Results show that using proposed approach may lead to more efficient implementations of the seizure classifier to be executed on power-efficient devices for long lasting real-time seizures detection.

Identifiants

pubmed: 35622175
doi: 10.1186/s40708-022-00159-3
pii: 10.1186/s40708-022-00159-3
pmc: PMC9142724
doi:

Types de publication

Journal Article

Langues

eng

Pagination

11

Informations de copyright

© 2022. The Author(s).

Références

Epilepsy Res. 2011 Sep;96(1-2):116-22
pubmed: 21676591
Cold Spring Harb Perspect Med. 2015 Jun 01;5(6):
pubmed: 26033084
Front Neurosci. 2016 May 13;10:196
pubmed: 27242402
Clin EEG Neurosci. 2004 Oct;35(4):181-4
pubmed: 15493532
J Neurophysiol. 2010 Dec;104(6):3530-9
pubmed: 20926610
J Neurosci. 2009 Apr 29;29(17):5402-10
pubmed: 19403808
J Neurosci. 2010 Jul 28;30(30):10076-85
pubmed: 20668192
Epilepsia. 2011 Mar;52(3):467-76
pubmed: 21204828
Clin EEG Neurosci. 2018 Sep;49(5):351-362
pubmed: 29214865
Pediatr Neurol. 2005 Mar;32(3):155-61
pubmed: 15730894
Cold Spring Harb Perspect Med. 2015 Sep 01;5(9):a022848
pubmed: 26328931
Sci Rep. 2015 Nov 10;5:16230
pubmed: 26553287
Med Eng Phys. 1999 Nov;21(9):601-8
pubmed: 10699562
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5162-5
pubmed: 23367091
J Clin Neurophysiol. 2015 Jun;32(3):235-9
pubmed: 26035676
Comput Biol Med. 2007 Nov;37(11):1647-52
pubmed: 17482156
Electroencephalogr Clin Neurophysiol. 1976 Nov;41(5):513-29
pubmed: 61855
BMC Neurosci. 2010 Aug 23;11:103
pubmed: 20731854
IEEE Trans Neural Netw. 1992;3(5):683-97
pubmed: 18276468
Ann Clin Transl Neurol. 2018 Dec 18;6(2):333-343
pubmed: 30847365
Epilepsy Behav. 2011 Feb;20(2):254-6
pubmed: 21276757
eNeuro. 2019 Aug 12;6(4):
pubmed: 31346002
Lancet Neurol. 2019 Apr;18(4):357-375
pubmed: 30773428
Medicine (Baltimore). 2017 May;96(19):e6879
pubmed: 28489789
Front Neuroinform. 2018 Nov 14;12:83
pubmed: 30487743
IEEE Signal Process Med Biol Symp. 2016 Dec;2016:
pubmed: 28649598
Electroencephalogr Clin Neurophysiol. 1994 Sep;91(3):194-204
pubmed: 7522148
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):E5321-30
pubmed: 25404339
Nat Rev Neurosci. 2005 Apr;6(4):285-96
pubmed: 15803160
J Neural Eng. 2009 Oct;6(5):056005
pubmed: 19717893
Nat Commun. 2017 Apr 04;8:14896
pubmed: 28374740
Comput Biol Med. 2005 Oct;35(7):603-16
pubmed: 15809098
Clin Neurophysiol. 2005 Nov;116(11):2701-6
pubmed: 16221562
Brain Topogr. 2017 Mar;30(2):257-271
pubmed: 27853892
IEEE Trans Biomed Eng. 1998 Feb;45(2):180-7
pubmed: 9473841
Can J Neurol Sci. 1989 Nov;16(4):398-401
pubmed: 2804800
Brain Inform. 2016 Jun;3(2):73-83
pubmed: 27747608
J Ment Sci. 1949 Oct;95(401):972-84
pubmed: 15396389
PLoS One. 2017 Sep 18;12(9):e0184044
pubmed: 28922360
Brain. 2017 Apr 1;140(4):981-997
pubmed: 28334965
Clin Neurophysiol. 2003 Jan;114(1):50-5
pubmed: 12495763
Electroencephalogr Clin Neurophysiol. 1982 Nov;54(5):530-40
pubmed: 6181976
Adv Exp Med Biol. 2014;813:43-54
pubmed: 25012365
Seizure. 2008 Jul;17(5):437-45
pubmed: 18282771
Int J Biomed Comput. 1985 May;16(3-4):217-29
pubmed: 3891638
Pediatr Neurol. 2011 Jan;44(1):31-4
pubmed: 21147384
Electroencephalogr Clin Neurophysiol. 1990 Jun;75(6):474-81
pubmed: 1693892
Front Neuroinform. 2018 Dec 10;12:95
pubmed: 30618700
IEEE Trans Biomed Eng. 2000 Oct;47(10):1406-11
pubmed: 11059176
Brain Topogr. 2019 Jul;32(4):530-549
pubmed: 31037477
Med Biol Eng Comput. 1997 Jul;35(4):354-60
pubmed: 9327612

Auteurs

Ziwei Wang (Z)

Institute of Interdisciplinary Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.

Paolo Mengoni (P)

Department of Journalism, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China. pmengoni@hkbu.edu.hk.

Classifications MeSH