Streptozotocin-Induced Hyperglycemia Is Associated with Unique Microbiome Metabolomic Signatures in Response to Ciprofloxacin Treatment.

antibiotics ciprofloxacin hyperglycemia metabolism metabolomics microbiome streptozotocin

Journal

Antibiotics (Basel, Switzerland)
ISSN: 2079-6382
Titre abrégé: Antibiotics (Basel)
Pays: Switzerland
ID NLM: 101637404

Informations de publication

Date de publication:
27 Apr 2022
Historique:
received: 28 02 2022
revised: 20 04 2022
accepted: 21 04 2022
entrez: 28 5 2022
pubmed: 29 5 2022
medline: 29 5 2022
Statut: epublish

Résumé

It is well recognized that the microbiome plays key roles in human health, and that damage to this system by, for example, antibiotic administration has detrimental effects. With this, there is collective recognition that off-target antibiotic susceptibility within the microbiome is a particularly troublesome side effect that has serious impacts on host well-being. Thus, a pressing area of research is the characterization of antibiotic susceptibility determinants within the microbiome, as understanding these mechanisms may inform the development of microbiome-protective therapeutic strategies. In particular, metabolic environment is known to play a key role in the different responses of this microbial community to antibiotics. Here, we explore the role of host dysglycemia on ciprofloxacin susceptibility in the murine cecum. We used a combination of 16S rRNA sequencing and untargeted metabolomics to characterize changes in both microbiome taxonomy and environment. We found that dysglycemia minimally impacted ciprofloxacin-associated changes in microbiome structure. However, from a metabolic perspective, host hyperglycemia was associated with significant changes in respiration, central carbon metabolism, and nucleotide synthesis-related metabolites. Together, these data suggest that host glycemia may influence microbiome function during antibiotic challenge.

Identifiants

pubmed: 35625229
pii: antibiotics11050585
doi: 10.3390/antibiotics11050585
pmc: PMC9137574
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : NIDDK NIH HHS
ID : R01 DK125382
Pays : United States
Organisme : NIH HHS
ID : R01DK125382
Pays : United States

Références

Bioinformatics. 2018 Mar 15;34(6):1053-1055
pubmed: 29091997
ISME J. 2012 Aug;6(8):1621-4
pubmed: 22402401
Metab Eng. 2015 May;29:26-35
pubmed: 25732623
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8173-80
pubmed: 26100898
Yonsei Med J. 2018 Jan;59(1):4-12
pubmed: 29214770
mBio. 2015 Nov 17;6(6):e01588-15
pubmed: 26578677
Bioinformatics. 2010 Dec 1;26(23):2969-76
pubmed: 20929912
J Inherit Metab Dis. 2018 May;41(3):355-366
pubmed: 29536203
PLoS One. 2014 Apr 08;9(4):e93827
pubmed: 24714158
BMC Pediatr. 2019 Jul 5;19(1):225
pubmed: 31277618
Antimicrob Agents Chemother. 2014 Dec;58(12):7151-63
pubmed: 25224006
Plant Physiol. 2014 Apr 11;165(2):841-853
pubmed: 24728709
Nat Commun. 2018 Aug 17;9(1):3294
pubmed: 30120222
J Pharmacol Exp Ther. 2016 Feb;356(2):267-75
pubmed: 26588930
Bioinformatics. 2020 May 1;36(10):3263-3265
pubmed: 32016344
Nature. 2017 Nov 23;551(7681):457-463
pubmed: 29088705
mBio. 2013 Aug 20;4(4):
pubmed: 23963176
Nat Methods. 2016 Jul;13(7):581-3
pubmed: 27214047
Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4554-61
pubmed: 20847294
Cell Rep. 2021 Dec 14;37(11):110113
pubmed: 34910917
PLoS One. 2013 Apr 22;8(4):e61217
pubmed: 23630581
Cell Metab. 2019 Aug 6;30(2):251-259
pubmed: 31279676
Genome Biol. 2014;15(12):550
pubmed: 25516281
Science. 2011 Nov 18;334(6058):982-6
pubmed: 22096200
Appl Environ Microbiol. 2007 Aug;73(16):5261-7
pubmed: 17586664
Nat Biotechnol. 2020 Jun;38(6):685-688
pubmed: 32483366
Nature. 2011 Aug 24;476(7361):393-4
pubmed: 21866137
Nature. 2013 Jul 11;499(7457):219-22
pubmed: 23748443
Nat Methods. 2021 Jul;18(7):747-756
pubmed: 34239102
Mol Syst Biol. 2017 Jan 16;13(1):907
pubmed: 28093455
Microbiology (Reading). 2015 Jun;161(6):1161-74
pubmed: 25787873
mSystems. 2021 Oct 26;6(5):e0058521
pubmed: 34519522
Cell Chem Biol. 2017 Feb 16;24(2):122-124
pubmed: 28212755
Science. 2021 Feb 19;371(6531):
pubmed: 33602825
Protein Cell. 2021 May;12(5):315-330
pubmed: 32394199
mSystems. 2020 Jul 28;5(4):
pubmed: 32723789
Nat Microbiol. 2019 Dec;4(12):2109-2117
pubmed: 31451773
Cell Chem Biol. 2017 Feb 16;24(2):195-206
pubmed: 28111098
FEMS Microbiol Lett. 2018 Jul 1;365(13):
pubmed: 29846552
Anal Chem. 2011 Sep 15;83(18):7074-80
pubmed: 21830798
Proc Natl Acad Sci U S A. 2018 Apr 17;115(16):4069-4074
pubmed: 29610312
Antimicrob Agents Chemother. 1998 Dec;42(12):3282-4
pubmed: 9835528
Genome Biol. 2011 Jun 24;12(6):R60
pubmed: 21702898
J Biol Chem. 2016 May 27;291(22):11928-38
pubmed: 27036942
Pharmaceuticals (Basel). 2018 Feb 01;11(1):
pubmed: 29389876
Syst Biol. 2019 Mar 1;68(2):365-369
pubmed: 30165689
Microb Cell Fact. 2007 Oct 02;6:31
pubmed: 17910757
Cell Metab. 2019 Oct 1;30(4):800-823.e7
pubmed: 31523007
PLoS Comput Biol. 2009 Aug;5(8):e1000465
pubmed: 19680427
Future Microbiol. 2015;10(7):1241-55
pubmed: 26119580
Lab Anim. 2011 Jul;45(3):131-40
pubmed: 21478271
Cell Rep. 2015 Nov 3;13(5):968-80
pubmed: 26565910

Auteurs

Jenna I Wurster (JI)

Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA.

Rachel L Peterson (RL)

Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA.

Peter Belenky (P)

Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA.

Classifications MeSH