Experimental Models for Testing the Efficacy of Pharmacological Treatments for Neonatal Hypoxic-Ischemic Encephalopathy.

cell cultures cerebral ischemia drug development efficacy studies hypoxia neonate animal models organotypic hippocampal slices oxygen and glucose deprivation toxicological studies

Journal

Biomedicines
ISSN: 2227-9059
Titre abrégé: Biomedicines
Pays: Switzerland
ID NLM: 101691304

Informations de publication

Date de publication:
19 Apr 2022
Historique:
received: 28 02 2022
revised: 13 04 2022
accepted: 15 04 2022
entrez: 28 5 2022
pubmed: 29 5 2022
medline: 29 5 2022
Statut: epublish

Résumé

Representing an important cause of long-term disability, term neonatal hypoxic-ischemic encephalopathy (HIE) urgently needs further research aimed at repurposing existing drug as well as developing new therapeutics. Since various experimental in vitro and in vivo models of HIE have been developed with distinct characteristics, it becomes important to select the appropriate preclinical screening cascade for testing the efficacy of novel pharmacological treatments. As therapeutic hypothermia is already a routine therapy for neonatal encephalopathy, it is essential that hypothermia be administered to the experimental model selected to allow translational testing of novel or repurposed drugs on top of the standard of care. Moreover, a translational approach requires that therapeutic interventions must be initiated after the induction of the insult, and the time window for intervention should be evaluated to translate to real world clinical practice. Hippocampal organotypic slice cultures, in particular, are an invaluable intermediate between simpler cell lines and in vivo models, as they largely maintain structural complexity of the original tissue and can be subjected to transient oxygen-glucose deprivation (OGD) and subsequent reoxygenation to simulate ischemic neuronal injury and reperfusion. Progressing to in vivo models, generally, rodent (mouse and rat) models could offer more flexibility and be more cost-effective for testing the efficacy of pharmacological agents with a dose-response approach. Large animal models, including piglets, sheep, and non-human primates, may be utilized as a third step for more focused and accurate translational studies, including also pharmacokinetic and safety pharmacology assessments. Thus, a preclinical proof of concept of efficacy of an emerging pharmacological treatment should be obtained firstly in vitro, including organotypic models, and, subsequently, in at least two different animal models, also in combination with hypothermia, before initiating clinical trials.

Identifiants

pubmed: 35625674
pii: biomedicines10050937
doi: 10.3390/biomedicines10050937
pmc: PMC9138693
pii:
doi:

Types de publication

Journal Article Review

Langues

eng

Références

Dev Neurosci. 2011;33(3-4):288-98
pubmed: 21757865
Ther Hypothermia Temp Manag. 2017 Mar;7(1):42-49
pubmed: 27327871
J Neuroinflammation. 2021 Oct 13;18(1):230
pubmed: 34645472
Exp Neurol. 2007 Mar;204(1):106-17
pubmed: 17157835
Stroke. 2019 May;50(5):1240-1249
pubmed: 31009360
Int J Dev Neurosci. 2009 Oct;27(6):549-57
pubmed: 19573586
Brain Res. 2009 Jul 28;1282:173-82
pubmed: 19501064
Neurobiol Dis. 2019 Jan;121:240-251
pubmed: 30300675
Exp Neurol. 2013 Dec;250:282-92
pubmed: 24120436
Nat Rev Neurol. 2015 Apr;11(4):192-208
pubmed: 25686754
Neuropharmacology. 2006 Aug;51(2):283-94
pubmed: 16697426
Neonatology. 2018;113(4):331-338
pubmed: 29514165
Nat Protoc. 2018 Sep;13(9):2062-2085
pubmed: 30202107
Exp Ther Med. 2022 Jan;23(1):99
pubmed: 34976141
Int J Mol Sci. 2021 Mar 19;22(6):
pubmed: 33808671
Lancet Neurol. 2019 Jan;18(1):35-45
pubmed: 30447969
Int J Mol Sci. 2019 Nov 22;20(23):
pubmed: 31771121
J Matern Fetal Neonatal Med. 2018 Apr;31(8):973-980
pubmed: 28274169
Int J Mol Sci. 2017 Jan 18;18(1):
pubmed: 28106772
Mol Neurobiol. 2016 Aug;53(6):4226-4237
pubmed: 26223803
Sci Rep. 2016 Apr 28;6:25178
pubmed: 27121655
ChemMedChem. 2010 Sep 3;5(9):1465-75
pubmed: 20665761
Exp Neurol. 2020 Feb;324:113117
pubmed: 31734315
Nat Med. 2019 May;25(5):784-791
pubmed: 31061540
Medicine (Baltimore). 2021 Jun 18;100(24):e26365
pubmed: 34128891
Biomed Res Int. 2017;2017:2924848
pubmed: 28698869
Brain Commun. 2020 Dec 01;3(1):fcaa211
pubmed: 33604569
Neurotherapeutics. 2012 Apr;9(2):359-70
pubmed: 22399133
Neurosci Lett. 2018 Mar 6;668:103-107
pubmed: 29339173
J Neuroinflammation. 2019 Oct 28;16(1):194
pubmed: 31660990
Neonatology. 2018;114(4):364-371
pubmed: 30153673
Int J Mol Sci. 2018 Jan 06;19(1):
pubmed: 29316653
Pediatr Int. 2021 May;63(5):497-503
pubmed: 33453136
J Vis Exp. 2008 Nov 19;(21):
pubmed: 19066530
Int J Mol Sci. 2017 Jan 28;18(2):
pubmed: 28134843
Mol Cell Neurosci. 2004 Jan;25(1):172-80
pubmed: 14962750
J Neurosci Res. 2022 Dec;100(12):2138-2153
pubmed: 34173261
Mol Neurobiol. 2022 Apr;59(4):2363-2377
pubmed: 35080759
Pediatr Res. 2006 May;59(5):684-9
pubmed: 16627882
Molecules. 2018 Jul 27;23(8):
pubmed: 30060443
Neonatology. 2019;116(1):76-84
pubmed: 31091527
Front Neurol. 2016 Apr 25;7:57
pubmed: 27199883
Neural Regen Res. 2019 Jan;14(1):65-66
pubmed: 30531073
Expert Rev Neurother. 2017 May;17(5):449-459
pubmed: 27830959
J Neurosci Res. 2006 Mar;83(4):584-93
pubmed: 16435392
J Matern Fetal Neonatal Med. 2012 Apr;25 Suppl 1:119-24
pubmed: 22348528
Ann Transl Med. 2021 Nov;9(22):1694
pubmed: 34988203
Rev Neurosci. 2022 Feb 07;33(6):583-606
pubmed: 35130375
Neuroscience. 2015 Oct 1;305:86-98
pubmed: 26254240
J Cereb Blood Flow Metab. 2021 Aug;41(8):2054-2066
pubmed: 33554708
Neurobiol Dis. 2013 Feb;50:76-85
pubmed: 23069678
Dev Neurosci. 2013;35(6):491-503
pubmed: 24192275
Children (Basel). 2018 Jul 19;5(7):
pubmed: 30029531
Pediatrics. 2016 Jun;137(6):
pubmed: 27244862
Biochem Soc Trans. 2014 Apr;42(2):564-8
pubmed: 24646279
J Neurosci. 1993 Aug;13(8):3510-24
pubmed: 8101871
Thyroid. 2018 Oct;28(10):1387-1397
pubmed: 30129879
Neurobiol Dis. 2016 Sep;93:57-63
pubmed: 27142685
Stroke. 2007 Oct;38(10):2795-803
pubmed: 17702962
Front Neurol. 2015 Sep 14;6:198
pubmed: 26441818
Stroke. 2012 Dec;43(12):3364-70
pubmed: 22996953
J Gerontol A Biol Sci Med Sci. 2016 Jan;71(1):50-60
pubmed: 25568096
Neuropharmacology. 2018 Jun;135:180-191
pubmed: 29551690
Eur J Neurosci. 1999 Oct;11(10):3637-47
pubmed: 10564371
Brain Circ. 2021 Mar 30;7(1):13-17
pubmed: 34084971
Trials. 2021 Jan 22;22(1):82
pubmed: 33482894
Methods Mol Biol. 2012;846:343-54
pubmed: 22367824
Resuscitation. 2015 Dec;97:88-90
pubmed: 25930163
PLoS One. 2014 Oct 06;9(10):e109845
pubmed: 25286345
Dis Model Mech. 2017 May 1;10(5):671-678
pubmed: 28237964
Methods Mol Biol. 2018;1717:229-235
pubmed: 29468596
Clin Perinatol. 2018 Jun;45(2):357-375
pubmed: 29747893
Dev Neurosci. 2017;39(1-4):124-140
pubmed: 28486224
Alcohol Clin Exp Res. 2016 Apr;40(4):706-16
pubmed: 27038592
Arch Dis Child Fetal Neonatal Ed. 2019 Jul;104(4):F424-F432
pubmed: 30322975

Auteurs

Elisa Landucci (E)

Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy.

Domenico E Pellegrini-Giampietro (DE)

Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy.

Fabrizio Facchinetti (F)

Department of Experimental Pharmacology and Translational Science, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy.

Classifications MeSH