Artificial Intelligence Enhances Diagnostic Flow Cytometry Workflow in the Detection of Minimal Residual Disease of Chronic Lymphocytic Leukemia.
artificial intelligence
chronic lymphocytic leukemia
flow cytometry
minimal residual disease
Journal
Cancers
ISSN: 2072-6694
Titre abrégé: Cancers (Basel)
Pays: Switzerland
ID NLM: 101526829
Informations de publication
Date de publication:
21 May 2022
21 May 2022
Historique:
received:
30
04
2022
revised:
17
05
2022
accepted:
18
05
2022
entrez:
28
5
2022
pubmed:
29
5
2022
medline:
29
5
2022
Statut:
epublish
Résumé
Flow cytometric (FC) immunophenotyping is critical but time-consuming in diagnosing minimal residual disease (MRD). We evaluated whether human-in-the-loop artificial intelligence (AI) could improve the efficiency of clinical laboratories in detecting MRD in chronic lymphocytic leukemia (CLL). We developed deep neural networks (DNN) that were trained on a 10-color CLL MRD panel from treated CLL patients, including DNN trained on the full cohort of 202 patients (F-DNN) and DNN trained on 138 patients with low-event cases (MRD < 1000 events) (L-DNN). A hybrid DNN approach was utilized, with F-DNN and L-DNN applied sequentially to cases. “Ground truth” classification of CLL MRD was confirmed by expert analysis. The hybrid DNN approach demonstrated an overall accuracy of 97.1% (95% CI: 84.7−99.9%) in an independent cohort of 34 unknown samples. When CLL cells were reported as a percentage of total white blood cells, there was excellent correlation between the DNN and expert analysis [r > 0.999; Passing−Bablok slope = 0.997 (95% CI: 0.988−0.999) and intercept = 0.001 (95% CI: 0.000−0.001)]. Gating time was dramatically reduced to 12 s/case by DNN from 15 min/case by the manual process. The proposed DNN demonstrated high accuracy in CLL MRD detection and significantly improved workflow efficiency. Additional clinical validation is needed before it can be fully integrated into the existing clinical laboratory practice.
Identifiants
pubmed: 35626140
pii: cancers14102537
doi: 10.3390/cancers14102537
pmc: PMC9139233
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
N Engl J Med. 2019 May 30;380(22):2095-2103
pubmed: 31141631
N Engl J Med. 2018 Mar 22;378(12):1107-1120
pubmed: 29562156
Am J Clin Pathol. 2014 Dec;142(6):837-44
pubmed: 25389338
Oncotarget. 2016 Nov 29;7(48):78269-78280
pubmed: 27861157
Leukemia. 2016 Apr;30(4):929-36
pubmed: 26639181
Br J Haematol. 2003 Jan;120(1):74-9
pubmed: 12492579
Cancers (Basel). 2022 Feb 11;14(4):
pubmed: 35205645
Blood. 2008 Apr 15;111(8):3941-67
pubmed: 18198345
Am J Clin Pathol. 2013 Oct;140(4):536-43
pubmed: 24045551
Cancers (Basel). 2021 Sep 12;13(18):
pubmed: 34572809
Cytometry B Clin Cytom. 2014 Mar;86(2):98-105
pubmed: 24243815
Leukemia. 2013 Jan;27(1):142-9
pubmed: 23041722
Curr Opin Oncol. 2020 Mar;32(2):162-169
pubmed: 31876546
Blood. 2018 Mar 1;131(9):955-962
pubmed: 29255066
Blood. 2014 Jun 12;123(24):3727-32
pubmed: 24705492
Blood. 2021 Dec 30;138(26):2753-2767
pubmed: 34724563
N Engl J Med. 2019 Aug 1;381(5):432-443
pubmed: 31365801
Blood. 2016 Jan 21;127(3):279-86
pubmed: 26576865
Leukemia. 2017 Oct;31(10):2094-2103
pubmed: 28104919
Cytometry A. 2019 Sep;95(9):966-975
pubmed: 31282025
J Clin Oncol. 2012 Mar 20;30(9):980-8
pubmed: 22331940
Leuk Res. 2009 Sep;33(9):1212-6
pubmed: 19230971
Blood. 2017 Jan 19;129(3):347-357
pubmed: 27903527
Nat Methods. 2013 Mar;10(3):228-38
pubmed: 23396282
Mayo Clin Proc. 2008 Jul;83(7):776-85
pubmed: 18613994
Am J Clin Pathol. 2021 Mar 15;155(4):597-605
pubmed: 33210119
Nat Biotechnol. 2018 Dec 03;:
pubmed: 30531897
Am J Hematol. 2019 Nov;94(11):1266-1287
pubmed: 31364186
Cytometry B Clin Cytom. 2020 Jan;98(1):99-107
pubmed: 30972977