Multifocal Electroretinogram Photopic Negative Response: A Reliable Paradigm to Detect Localized Retinal Ganglion Cells' Impairment in Retrobulbar Optic Neuritis Due to Multiple Sclerosis as a Model of Retinal Neurodegeneration.
multifocal electroretinogram
multiple sclerosis
neurodegeneration
photopic negative response
retinal ganglion cells
Journal
Diagnostics (Basel, Switzerland)
ISSN: 2075-4418
Titre abrégé: Diagnostics (Basel)
Pays: Switzerland
ID NLM: 101658402
Informations de publication
Date de publication:
06 May 2022
06 May 2022
Historique:
received:
29
03
2022
revised:
28
04
2022
accepted:
05
05
2022
entrez:
28
5
2022
pubmed:
29
5
2022
medline:
29
5
2022
Statut:
epublish
Résumé
The measure of the full-field photopic negative response (ff-PhNR) of light-adapted full-field electroretinogram (ff-ERG) allows to evaluate the function of the innermost retinal layers (IRL) containing primarily retinal ganglion cells (RGCs) and other non-neuronal elements of the entire retina. The aim of this study was to acquire functional information of localized IRL by measuring the PhNR in response to multifocal stimuli (mfPhNR). In this case-control observational and retrospective study, we assessed mfPhNR responses from 25 healthy controls and from 20 patients with multiple sclerosis with previous history of optic neuritis (MS-ON), with full recovery of visual acuity, IRL morphological impairment, and absence of morpho-functional involvement of outer retinal layers (ORL). MfPhNR response amplitude densities (RADs) were measured from concentric rings (R) with increasing foveal eccentricity: 0−5° (R1), 5−10° (R2), 10−15° (R3), 15−20° (R4), and 20−25° (R5) from retinal sectors (superior-temporal (ST), superior-nasal (SN), inferior-nasal (IN), and inferior-temporal (IT)); between 5° and 20° and from retinal sectors (superior (S), temporal (T), inferior (I), and nasal (N)); and within 5° to 10° and within 10° and 20° from the fovea. The mfPhNR RAD values observed in all rings or sectors in MS-ON eyes were significantly reduced (p < 0.01) with respect to control ones. Our results suggest that mfPhNR recordings may detect localized IRL dysfunction in the pathologic condition of selective RGCs neurodegeneration.
Identifiants
pubmed: 35626311
pii: diagnostics12051156
doi: 10.3390/diagnostics12051156
pmc: PMC9139610
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
Vision Res. 1990;30(11):1897-911
pubmed: 2288097
Acta Diabetol. 2018 Nov;55(11):1191-1200
pubmed: 30159747
Curr Eye Res. 2015 Jan;40(1):77-86
pubmed: 24832792
Electroencephalogr Clin Neurophysiol. 1989 Jan-Feb;74(1):1-10
pubmed: 2463143
Acta Ophthalmol. 2018 Mar;96(2):e156-e163
pubmed: 28926202
Mult Scler. 2011 Jul;17(7):830-7
pubmed: 21300734
Doc Ophthalmol. 2011 Dec;123(3):173-8
pubmed: 22038575
Invest Ophthalmol Vis Sci. 2014 Jun 26;55(7):4512-24
pubmed: 24970256
Science. 1981 Feb 27;211(4485):953-5
pubmed: 7466369
Invest Ophthalmol Vis Sci. 2015 Jun;56(6):3709-14
pubmed: 26047172
J Exp Psychol. 1951 Oct;42(4):217-26
pubmed: 14888825
Neurol Sci. 2015 Apr;36(4):617-20
pubmed: 25311917
J Vis. 2002;2(8):577-87
pubmed: 12678641
BMC Ophthalmol. 2015 Sep 17;15:122
pubmed: 26383096
Doc Ophthalmol. 2016 Feb;132(1):57-65
pubmed: 26831670
PLoS One. 2012;7(5):e37638
pubmed: 22629435
Int Sch Res Notices. 2014 Jul 07;2014:307064
pubmed: 27355035
J Ophthalmol. 2012;2012:397178
pubmed: 23133741
Clin Neurophysiol. 2010 Mar;121(3):380-5
pubmed: 20071230
Exp Eye Res. 2015 Dec;141:164-70
pubmed: 25998495
Br J Ophthalmol. 1954 May;38(5):257-65
pubmed: 13160318
Doc Ophthalmol. 2016 Jun;132(3):177-87
pubmed: 27071393
Invest Ophthalmol Vis Sci. 2017 May 1;58(6):BIO300-BIO306
pubmed: 29049835
Semin Ophthalmol. 1998 Dec;13(4):178-88
pubmed: 9878668
Ann Neurol. 2011 Feb;69(2):292-302
pubmed: 21387374
Invest Ophthalmol Vis Sci. 2000 Aug;41(9):2797-810
pubmed: 10937600
Doc Ophthalmol. 2015 Feb;130(1):1-12
pubmed: 25502644
J Clin Neurophysiol. 2013 Aug;30(4):376-81
pubmed: 23912576
PLoS One. 2019 Nov 7;14(11):e0220992
pubmed: 31697709
Curr Opin Ophthalmol. 2016 Mar;27(2):118-24
pubmed: 26720775
Invest Ophthalmol Vis Sci. 2019 May 1;60(6):1879-1887
pubmed: 31042794
Doc Ophthalmol. 2018 Jun;136(3):207-211
pubmed: 29855761
Neurology. 1983 Nov;33(11):1444-52
pubmed: 6685237
Am J Ophthalmol. 2020 Jul;215:118-126
pubmed: 32087144
Transl Vis Sci Technol. 2022 Mar 2;11(3):31
pubmed: 35344016
J Glaucoma. 2011 Feb;20(2):118-25
pubmed: 20436366
Graefes Arch Clin Exp Ophthalmol. 2017 Dec;255(12):2481-2486
pubmed: 28831547
J Opt Soc Am A Opt Image Sci Vis. 1996 Mar;13(3):634-40
pubmed: 8627420
Vision Res. 1995 Jun;35(11):1641-9
pubmed: 7667921
Vision Res. 1989;29(8):985-8
pubmed: 2629213
Arch Neurol. 2008 Jun;65(6):727-32
pubmed: 18541792
Exp Eye Res. 2020 Nov;200:108242
pubmed: 32926894
Adv Ther. 2021 Jul;38(7):3986-3996
pubmed: 34109558
Invest Ophthalmol Vis Sci. 1999 May;40(6):1124-36
pubmed: 10235545
J Clin Med. 2021 Nov 12;10(22):
pubmed: 34830553
Acta Ophthalmol. 2017 Mar;95(2):133-139
pubmed: 27535202
Front Neurol. 2020 Sep 15;11:858
pubmed: 33041959
Invest Ophthalmol Vis Sci. 2015 Apr;56(4):2469-74
pubmed: 25634980
Retina. 2007 Mar;27(3):312-20
pubmed: 17460586
J Clin Med. 2020 Nov 22;9(11):
pubmed: 33266435
Doc Ophthalmol. 2012 Feb;124(1):1-13
pubmed: 22038576
Invest Ophthalmol Vis Sci. 2005 Apr;46(4):1453-62
pubmed: 15790915
J Comp Neurol. 1990 Oct 1;300(1):5-25
pubmed: 2229487
Invest Ophthalmol Vis Sci. 2020 May 11;61(5):11
pubmed: 32396630
Invest Ophthalmol Vis Sci. 2012 Oct 09;53(11):6973-80
pubmed: 22969069
Doc Ophthalmol. 2018 Feb;136(1):1-26
pubmed: 29397523
Exp Brain Res. 1984;55(3):483-93
pubmed: 6468554