Quantitative Sodium (
MRI
brain tumor
sodium
Journal
Diagnostics (Basel, Switzerland)
ISSN: 2075-4418
Titre abrégé: Diagnostics (Basel)
Pays: Switzerland
ID NLM: 101658402
Informations de publication
Date de publication:
13 May 2022
13 May 2022
Historique:
received:
17
03
2022
revised:
29
04
2022
accepted:
05
05
2022
entrez:
28
5
2022
pubmed:
29
5
2022
medline:
29
5
2022
Statut:
epublish
Résumé
Background: 23Na MRI correlates with tumor proliferation, and studies in pediatric patients are lacking. The purpose of the study: (1) to compare total sodium concentration (TSC) between pediatric glioma and non-neoplastic brain tissue using 23Na MRI; (2) compare tissue conspicuity of bound sodium concentration (BSC) using 23Na MRI dual echo relative to TSC imaging. Methods: TSC was measured in: (1) non-neoplastic brain tissues and (2) three types of manually segmented gliomas (diffuse intrinsic brainstem glioma (DIPG), recurrent supratentorial low-grade glioma (LGG), and high-grade glioma (HGG)). In a subset of patients, serial changes in both TSC and BSC (dual echo 23Na MRI) were assessed. Results: Twenty-six pediatric patients with gliomas (median age of 12.0 years, range 4.9−23.3 years) were scanned with 23Na MRI. DIPG treated with RT demonstrated higher TSC values than the uninvolved infratentorial tissues (p < 0.001). Recurrent supratentorial LGG and HGG exhibited higher TSC values than the uninvolved white matter (WM) and gray matter (GM) (p < 0.002 for LGG, and p < 0.02 for HGG). The dual echo 23Na MRI suppressed the sodium signal within both CSF and necrotic foci. Conclusion: Quantitative 23Na MRI of pediatric gliomas demonstrates a range of values that are higher than non-neoplastic tissues. Dual echo 23Na MRI of BCS improves tissue conspicuity relative to TSC imaging.
Identifiants
pubmed: 35626378
pii: diagnostics12051223
doi: 10.3390/diagnostics12051223
pmc: PMC9140048
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : NIBIB NIH HHS
ID : P41 EB017183
Pays : United States
Références
Radiology. 2003 May;227(2):529-37
pubmed: 12663825
J Magn Reson Imaging. 2019 Oct;50(4):1278-1284
pubmed: 30859655
Cancer Res. 1980 May;40(5):1493-500
pubmed: 7370987
Neuroimage. 2018 Mar;168:250-268
pubmed: 27890804
Brain. 2013 Jul;136(Pt 7):2305-17
pubmed: 23801742
J Am Coll Radiol. 2007 Oct;4(10):739-41
pubmed: 17903762
BMC Med Imaging. 2019 Apr 3;19(1):26
pubmed: 30943911
Magn Reson Med. 2005 Jan;53(1):85-92
pubmed: 15690506
Cancer Med. 2015 Apr;4(4):608-19
pubmed: 25627000
J Cereb Blood Flow Metab. 2015 Jan;35(1):103-10
pubmed: 25335803
Magn Reson Med. 2015 Jul;74(1):162-174
pubmed: 25078966
Magn Reson Med. 1999 Feb;41(2):351-9
pubmed: 10080284
Brain. 2010 Mar;133(Pt 3):847-57
pubmed: 20110245
Eur Radiol. 2019 Dec;29(12):7055-7062
pubmed: 31264011
Neurology. 2017 Jan 17;88(3):289-295
pubmed: 27974643
Radiology. 2019 Aug;292(2):422-428
pubmed: 31184559
Sci Rep. 2014 Apr 23;4:4763
pubmed: 24755879
Neuro Oncol. 2017 Nov 6;19(suppl_5):v1-v88
pubmed: 29117289
Eur J Radiol Open. 2019 Apr 19;6:156-162
pubmed: 31032385
Ann Neurol. 2009 Jul;66(1):55-62
pubmed: 19670436
Invest Radiol. 2011 Sep;46(9):539-47
pubmed: 21577129
Magn Reson Med. 1997 May;37(5):706-15
pubmed: 9126944