A Skew Logistic Distribution for Modelling COVID-19 Waves and Its Evaluation Using the Empirical Survival Jensen-Shannon Divergence.

COVID-19 data Kolmogorov–Smirnov two-sample test bi-logistic growth empirical survival Jensen–Shannon divergence epidemic waves skew logistic distribution

Journal

Entropy (Basel, Switzerland)
ISSN: 1099-4300
Titre abrégé: Entropy (Basel)
Pays: Switzerland
ID NLM: 101243874

Informations de publication

Date de publication:
25 Apr 2022
Historique:
received: 21 03 2022
revised: 19 04 2022
accepted: 21 04 2022
entrez: 28 5 2022
pubmed: 29 5 2022
medline: 29 5 2022
Statut: epublish

Résumé

A novel yet simple extension of the symmetric logistic distribution is proposed by introducing a skewness parameter. It is shown how the three parameters of the ensuing skew logistic distribution may be estimated using maximum likelihood. The skew logistic distribution is then extended to the skew bi-logistic distribution to allow the modelling of multiple waves in epidemic time series data. The proposed skew-logistic model is validated on COVID-19 data from the UK, and is evaluated for goodness-of-fit against the logistic and normal distributions using the recently formulated empirical survival Jensen-Shannon divergence (ESJS) and the Kolmogorov-Smirnov two-sample test statistic (KS2). We employ 95% bootstrap confidence intervals to assess the improvement in goodness-of-fit of the skew logistic distribution over the other distributions. The obtained confidence intervals for the ESJS are narrower than those for the KS2 on using this dataset, implying that the ESJS is more powerful than the KS2.

Identifiants

pubmed: 35626485
pii: e24050600
doi: 10.3390/e24050600
pmc: PMC9140682
pii:
doi:

Types de publication

Journal Article

Langues

eng

Références

Risk Manag Healthc Policy. 2021 Sep 13;14:3775-3782
pubmed: 34548826
Int J Epidemiol. 1982 Mar;11(1):82-9
pubmed: 7085184
Ann Bot. 2004 Dec;94(6):811-7
pubmed: 15466875
BMC Pharmacol. 2010 Jun 07;10:6
pubmed: 20529254
Lancet Public Health. 2020 Jul;5(7):e375-e385
pubmed: 32502389
R Soc Open Sci. 2020 Nov 25;7(11):201726
pubmed: 33391818
Int J Forecast. 2022 Apr-Jun;38(2):423-438
pubmed: 32863495
Chaos Solitons Fractals. 2020 Jun;135:109841
pubmed: 32501369
Chaos Solitons Fractals. 2020 Nov;140:110241
pubmed: 32863615

Auteurs

Mark Levene (M)

Department of Computer Science and Information Systems, Birkbeck, University of London, London WC1E 7HX, UK.

Classifications MeSH