Carbon Dots Boost dsRNA Delivery in Plants and Increase Local and Systemic siRNA Production.
RNA silencing
carbon dots
dsRNA delivery
hydrothermal synthesis
plants
siRNA
systemic RNAi
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
10 May 2022
10 May 2022
Historique:
received:
07
04
2022
revised:
04
05
2022
accepted:
06
05
2022
entrez:
28
5
2022
pubmed:
29
5
2022
medline:
1
6
2022
Statut:
epublish
Résumé
In this work, we obtained carbon dots from glucose or saccharose as the nucleation source and passivated them with branched polyethylenimines for developing dsRNA nanocomposites. The CDs were fully characterized using hydrodynamic analyses, transmission electron microscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The ζ potential determined that the CDs had positive charges, good electrophoretic mobility and conductivity, and were suitable for obtaining dsRNA nanocomposites. DsRNA naked or coated with the CDs were delivered to leaves of cucumber plants by spraying. Quantitation of the dsRNA that entered the leaves showed that when coated with the CDs, 50-fold more dsRNA was detected than when naked dsRNA. Moreover, specific siRNAs derived from the sprayed dsRNAs were 13 times more abundant when the dsRNA was coated with the CDs. Systemic dsRNAs were determined in distal leaves and showed a dramatic increase in concentration when delivered as a nanocomposite. Similarly, systemic siRNAs were significantly more abundant in distal leaves when spraying with the CD-dsRNA nanocomposite. Furthermore, FITC-labeled dsRNA was shown to accumulate in the apoplast and increase its entry into the plant when coated with CDs. These results indicate that CDs obtained by hydrothermal synthesis are suitable for dsRNA foliar delivery in RNAi plant applications.
Identifiants
pubmed: 35628147
pii: ijms23105338
doi: 10.3390/ijms23105338
pmc: PMC9141514
pii:
doi:
Substances chimiques
RNA, Double-Stranded
0
RNA, Small Interfering
0
Carbon
7440-44-0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Ministerio de Ciencia, Innovación y Universidades
ID : RTA2017-C00061-C03-01
Organisme : IFAPA
ID : AVA2019.015
Références
ACS Appl Bio Mater. 2019 Jun 17;2(6):2317-2338
pubmed: 35030725
Nat Plants. 2017 Jan 09;3:16207
pubmed: 28067898
PLoS Pathog. 2016 Oct 13;12(10):e1005901
pubmed: 27737019
Sci Total Environ. 2019 Jun 1;667:485-499
pubmed: 30833247
Nanotoxicology. 2013 May;7(3):323-37
pubmed: 22263604
Beilstein J Org Chem. 2017 Apr 10;13:675-693
pubmed: 28503203
BMC Biotechnol. 2003 Mar 20;3:3
pubmed: 12659646
Trends Plant Sci. 2016 Aug;21(8):699-712
pubmed: 27130471
Angew Chem Int Ed Engl. 2018 May 22;57(21):6216-6220
pubmed: 29637675
Nanotechnology. 2019 Mar 29;30(13):135101
pubmed: 30609415
Chem Commun (Camb). 2009 Sep 14;(34):5118-20
pubmed: 20448965
Angew Chem Int Ed Engl. 2013 Apr 2;52(14):3953-7
pubmed: 23450679
Nanoscale. 2018 Jul 13;10(27):12871-12934
pubmed: 29926865
J Colloid Interface Sci. 2018 Mar 1;513:505-514
pubmed: 29179091
Curr Opin Virol. 2017 Oct;26:28-35
pubmed: 28753441
Front Plant Sci. 2016 Aug 30;7:1327
pubmed: 27625678
Biotechniques. 2005 Oct;39(4):519-25
pubmed: 16235564
Sci Rep. 2018 May 4;8(1):7057
pubmed: 29728593
Sci Rep. 2018 May 22;8(1):7991
pubmed: 29789656
Curr Opin Biotechnol. 2021 Aug;70:136-142
pubmed: 34000482
ACS Nano. 2016 Jan 26;10(1):484-91
pubmed: 26646584
Colloids Surf B Biointerfaces. 2012 Dec 1;100:209-14
pubmed: 22766299
J Adv Res. 2019 Jan 18;18:81-93
pubmed: 30828478
Int J Nanomedicine. 2016 Nov 28;11:6325-6336
pubmed: 27932880
Biomaterials. 2012 May;33(13):3604-13
pubmed: 22341214
Biomaterials. 2015 May;51:290-302
pubmed: 25771019
Front Plant Sci. 2021 Dec 07;12:734618
pubmed: 34950158
Front Plant Sci. 2020 Jun 12;11:816
pubmed: 32595687
Front Chem. 2019 Oct 04;7:671
pubmed: 31637234
Trends Plant Sci. 2017 Jun;22(6):445-447
pubmed: 28416163
J Virol. 2007 Apr;81(8):3797-806
pubmed: 17267504
Front Plant Sci. 2020 Feb 12;11:51
pubmed: 32117388
Appl Microbiol Biotechnol. 2021 Aug;105(16-17):6381-6393
pubmed: 34415390
Nat Plants. 2016 Sep 19;2:16151
pubmed: 27643635
Front Plant Sci. 2021 Mar 02;12:610283
pubmed: 33737942
Sci Rep. 2016 May 25;6:26738
pubmed: 27221055
Bioconjug Chem. 2013 Jun 19;24(6):968-78
pubmed: 23682934
J Vis Exp. 2015 Mar 25;(97):
pubmed: 25867635
Nanotoxicology. 2016;10(3):257-78
pubmed: 26067571
Plant Physiol. 2020 Oct;184(2):647-657
pubmed: 32764133
Front Plant Sci. 2019 Oct 25;10:1319
pubmed: 31708946
Turk J Pharm Sci. 2018 Aug;15(2):219-230
pubmed: 32454664
Nat Mater. 2013 Nov;12(11):967-77
pubmed: 24150415
Nanoscale. 2018 Jul 9;10(26):12734-12742
pubmed: 29946587
Nat Nanotechnol. 2007 May;2(5):295-300
pubmed: 18654287
Biomaterials. 2013 Sep;34(29):7168-80
pubmed: 23790437
J Nanobiotechnology. 2014 Dec 30;12:58
pubmed: 25547381
R Soc Open Sci. 2018 Jul 11;5(7):180245
pubmed: 30109080
New Phytol. 2018 Apr;218(1):29-40
pubmed: 29418002
Front Plant Sci. 2020 Apr 21;11:451
pubmed: 32373146
Cell. 2003 Dec 26;115(7):799-811
pubmed: 14697199
J Biotechnol. 2012 Aug 31;160(3-4):97-104
pubmed: 22575788