Guiding Efficient, Effective, and Patient-Oriented Electrolyte Replacement in Critical Care: An Artificial Intelligence Reinforcement Learning Approach.

MIMIC-IV artificial intelligence decision support systems electrolytes electronic health records machine learning reinforcement learning retrospective studies

Journal

Journal of personalized medicine
ISSN: 2075-4426
Titre abrégé: J Pers Med
Pays: Switzerland
ID NLM: 101602269

Informations de publication

Date de publication:
20 Apr 2022
Historique:
received: 25 02 2022
revised: 01 04 2022
accepted: 04 04 2022
entrez: 28 5 2022
pubmed: 29 5 2022
medline: 29 5 2022
Statut: epublish

Résumé

Both provider- and protocol-driven electrolyte replacement have been linked to the over-prescription of ubiquitous electrolytes. Here, we describe the development and retrospective validation of a data-driven clinical decision support tool that uses reinforcement learning (RL) algorithms to recommend patient-tailored electrolyte replacement policies for ICU patients. We used electronic health records (EHR) data that originated from two institutions (UPHS; MIMIC-IV). The tool uses a set of patient characteristics, such as their physiological and pharmacological state, a pre-defined set of possible repletion actions, and a set of clinical goals to present clinicians with a recommendation for the route and dose of an electrolyte. RL-driven electrolyte repletion substantially reduces the frequency of magnesium and potassium replacements (up to 60%), adjusts the timing of interventions in all three electrolytes considered (potassium, magnesium, and phosphate), and shifts them towards orally administered repletion over intravenous replacement. This shift in recommended treatment limits risk of the potentially harmful effects of over-repletion and implies monetary savings. Overall, the RL-driven electrolyte repletion recommendations reduce excess electrolyte replacements and improve the safety, precision, efficacy, and cost of each electrolyte repletion event, while showing robust performance across patient cohorts and hospital systems.

Identifiants

pubmed: 35629084
pii: jpm12050661
doi: 10.3390/jpm12050661
pmc: PMC9143326
pii:
doi:

Types de publication

Journal Article

Langues

eng

Références

BMC Med Inform Decis Mak. 2016 Nov 3;16(1):138
pubmed: 27809908
Front Neurosci. 2013 Nov 20;7:218
pubmed: 24311997
Resuscitation. 2006 Jul;70(1):10-25
pubmed: 16600469
Crit Care Clin. 2019 Jul;35(3):483-495
pubmed: 31076048
Int J Clin Exp Physiol. 2017;4(3):111-122
pubmed: 29218312
Crit Care Med. 2003 Apr;31(4):1082-7
pubmed: 12682476
Intensive Crit Care Nurs. 2009 Aug;25(4):181-9
pubmed: 19398203
Crit Care Med. 2015 Aug;43(8):1660-8
pubmed: 26035147
J R Coll Physicians Edinb. 2011 Jun;41(2):155-62
pubmed: 21677922
Eur J Cardiothorac Surg. 2004 Aug;26(2):306-10
pubmed: 15296888
Healthc Manage Forum. 2016 Jan;29(1):4-7
pubmed: 26656389
Crit Care Med. 2016 Nov;44(11):e1021-e1030
pubmed: 27509387
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2978-2981
pubmed: 28268938
Am J Med Sci. 2011 Oct;342(4):282-9
pubmed: 21817885
Sci Rep. 2018 Aug 9;8(1):11915
pubmed: 30093668
Judgm Decis Mak. 2012 May;7(3):332-359
pubmed: 25530822
J Intensive Care Med. 2019 Nov-Dec;34(11-12):967-972
pubmed: 28703019
BMJ Open. 2015 Dec 29;5(12):e008073
pubmed: 26715477
Crit Care Nurse. 2019 Feb;39(1):e13-e18
pubmed: 30710043
JAMA. 2020 Mar 17;323(11):1052-1060
pubmed: 32065827
Neurobiol Stress. 2016 Feb 12;3:83-95
pubmed: 27981181
Anesth Analg. 1988 Feb;67(2):131-6
pubmed: 3341565
Nat Med. 2020 Mar;26(3):364-373
pubmed: 32152583
Intensive Care Med. 2021 Feb;47(2):147-149
pubmed: 32767073
Ann Saudi Med. 2005 Mar-Apr;25(2):105-10
pubmed: 15977686
Can J Hosp Pharm. 2013 Mar;66(2):96-103
pubmed: 23616673
Ann Thorac Surg. 2016 Oct;102(4):1181-8
pubmed: 27596917
Sci Data. 2016 May 24;3:160035
pubmed: 27219127
JAMA Netw Open. 2018 Aug 3;1(4):e181018
pubmed: 30646095
Kidney Dis (Basel). 2019 Feb;5(1):28-33
pubmed: 30815462
J Appl Res Mem Cogn. 2015 Dec 1;4(4):344-355
pubmed: 26664820

Auteurs

Niranjani Prasad (N)

Department of Computer Science, Princeton University, Princeton, NJ 08540, USA.

Aishwarya Mandyam (A)

Department of Computer Science, Princeton University, Princeton, NJ 08540, USA.
Gladstone Institutes, San Francisco, CA 94158, USA.

Corey Chivers (C)

University of Pennsylvania Health System, Philadelphia, PA 19104, USA.

Michael Draugelis (M)

University of Pennsylvania Health System, Philadelphia, PA 19104, USA.

C William Hanson (CW)

University of Pennsylvania Health System, Philadelphia, PA 19104, USA.
Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA.

Barbara E Engelhardt (BE)

Department of Computer Science, Princeton University, Princeton, NJ 08540, USA.
Gladstone Institutes, San Francisco, CA 94158, USA.

Krzysztof Laudanski (K)

Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA.
Penn Medicine Predictive Healthcare, University of Pennsylvania Health System, Philadelphia, PA 19104, USA.
Leonard Davis Institute of Healthcare Economics, University of Pennsylvania, Philadelphia, PA 19104, USA.

Classifications MeSH