Optimization of Imputation Strategies for High-Resolution Gas Chromatography-Mass Spectrometry (HR GC-MS) Metabolomics Data.

HR GC–MS imputation missing values metabolomics

Journal

Metabolites
ISSN: 2218-1989
Titre abrégé: Metabolites
Pays: Switzerland
ID NLM: 101578790

Informations de publication

Date de publication:
11 May 2022
Historique:
received: 06 04 2022
revised: 07 05 2022
accepted: 09 05 2022
entrez: 28 5 2022
pubmed: 29 5 2022
medline: 29 5 2022
Statut: epublish

Résumé

Gas chromatography-coupled mass spectrometry (GC-MS) has been used in biomedical research to analyze volatile, non-polar, and polar metabolites in a wide array of sample types. Despite advances in technology, missing values are still common in metabolomics datasets and must be properly handled. We evaluated the performance of ten commonly used missing value imputation methods with metabolites analyzed on an HR GC-MS instrument. By introducing missing values into the complete (i.e., data without any missing values) National Institute of Standards and Technology (NIST) plasma dataset, we demonstrate that random forest (RF), glmnet ridge regression (GRR), and Bayesian principal component analysis (BPCA) shared the lowest root mean squared error (RMSE) in technical replicate data. Further examination of these three methods in data from baboon plasma and liver samples demonstrated they all maintained high accuracy. Overall, our analysis suggests that any of the three imputation methods can be applied effectively to untargeted metabolomics datasets with high accuracy. However, it is important to note that imputation will alter the correlation structure of the dataset and bias downstream regression coefficients and

Identifiants

pubmed: 35629933
pii: metabo12050429
doi: 10.3390/metabo12050429
pmc: PMC9144635
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : NIDA NIH HHS
ID : U54 DA049113
Pays : United States
Organisme : NIH HHS
ID : U19 AG057758
Pays : United States
Organisme : NIH HHS
ID : U54 DA049113
Pays : United States

Références

PLoS Comput Biol. 2018 Jan 31;14(1):e1005973
pubmed: 29385130
BMC Bioinformatics. 2019 Dec 20;20(Suppl 24):673
pubmed: 31861984
BMC Genomics. 2015;16 Suppl 9:S1
pubmed: 26330180
BMC Med Res Methodol. 2020 Jul 25;20(1):199
pubmed: 32711455
BMC Bioinformatics. 2017 Feb 20;18(1):114
pubmed: 28219348
Sci Rep. 2018 Jan 12;8(1):663
pubmed: 29330539
Bioinformatics. 2018 May 1;34(9):1555-1561
pubmed: 29272352
J Big Data. 2021;8(1):140
pubmed: 34722113
Plant J. 2008 Feb;53(4):691-704
pubmed: 18269577
BMC Bioinformatics. 2019 Oct 11;20(1):492
pubmed: 31601178
J Clin Epidemiol. 2006 Oct;59(10):1087-91
pubmed: 16980149
Metabolites. 2021 Nov 18;11(11):
pubmed: 34822446
Clin Pharmacol Ther. 2019 Sep;106(3):544-556
pubmed: 31173340
Nat Methods. 2015 Jun;12(6):523-6
pubmed: 25938372
Eur J Pharm Sci. 2017 Nov 15;109S:S15-S21
pubmed: 28502671
Anal Chem. 2016 Sep 6;88(17):8802-11
pubmed: 27461032
Metabolites. 2020 Nov 26;10(12):
pubmed: 33256233
Bioanalysis. 2019 Dec;11(24):2297-2318
pubmed: 31845604
PLoS One. 2019 Apr 5;14(4):e0214487
pubmed: 30951537
Obes Rev. 2013 Apr;14(4):344-9
pubmed: 23279162
Brief Bioinform. 2017 Mar 1;18(2):312-320
pubmed: 26896791
Environ Int. 2021 Jul;152:106503
pubmed: 33756430
Ann Transl Med. 2016 Jan;4(1):9
pubmed: 26855945
Anal Chem. 2006 Jan 15;78(2):567-74
pubmed: 16408941
Nat Methods. 2018 Jan;15(1):53-56
pubmed: 29176591
Metabolites. 2021 Nov 26;11(12):
pubmed: 34940558
Metabolites. 2014 Jun 16;4(2):433-52
pubmed: 24957035
J Proteome Res. 2020 Jul 2;19(7):2717-2731
pubmed: 31978300

Auteurs

Isaac Ampong (I)

Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University, Winston-Salem, NC 27157, USA.

Kip D Zimmerman (KD)

Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University, Winston-Salem, NC 27157, USA.

Peter W Nathanielsz (PW)

Center for the Study of Fetal Programming, University of Wyoming, Laramie, WY 82071, USA.
Southwest National Primate Research Center, San Antonio, TX 78227, USA.

Laura A Cox (LA)

Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University, Winston-Salem, NC 27157, USA.
Southwest National Primate Research Center, San Antonio, TX 78227, USA.

Michael Olivier (M)

Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University, Winston-Salem, NC 27157, USA.

Classifications MeSH