Structural Assessment of Interfaces in Projected Phase-Change Memory.

STEM X-ray reflectivity confined phase-change material in-memory computing interface engineering projected phase-change memory sputtering deposition

Journal

Nanomaterials (Basel, Switzerland)
ISSN: 2079-4991
Titre abrégé: Nanomaterials (Basel)
Pays: Switzerland
ID NLM: 101610216

Informations de publication

Date de publication:
17 May 2022
Historique:
received: 05 04 2022
revised: 27 04 2022
accepted: 09 05 2022
entrez: 28 5 2022
pubmed: 29 5 2022
medline: 29 5 2022
Statut: epublish

Résumé

Non-volatile memories based on phase-change materials have gained ground for applications in analog in-memory computing. Nonetheless, non-idealities inherent to the material result in device resistance variations that impair the achievable numerical precision. Projected-type phase-change memory devices reduce these non-idealities. In a projected phase-change memory, the phase-change storage mechanism is decoupled from the information retrieval process by using projection of the phase-change material's phase configuration onto a projection liner. It has been suggested that the interface resistance between the phase-change material and the projection liner is an important parameter that dictates the efficacy of the projection. In this work, we establish a metrology framework to assess and understand the relevant structural properties of the interfaces in thin films contained in projected memory devices. Using X-ray reflectivity, X-ray diffraction and transmission electron microscopy, we investigate the quality of the interfaces and the layers' properties. Using demonstrator examples of Sb and Sb

Identifiants

pubmed: 35630924
pii: nano12101702
doi: 10.3390/nano12101702
pmc: PMC9147056
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : European Research Council
ID : 682675
Pays : International
Organisme : European Research Council
ID : 966764
Pays : International

Références

Nat Mater. 2007 Nov;6(11):824-32
pubmed: 17972937
Sci Rep. 2020 May 19;10(1):8248
pubmed: 32427898
Nanoscale. 2021 Oct 8;13(38):16146-16155
pubmed: 34542138
Nat Mater. 2018 Aug;17(8):681-685
pubmed: 29915424
Science. 2019 Oct 11;366(6462):210-215
pubmed: 31439757
Nano Lett. 2017 Jun 14;17(6):3688-3693
pubmed: 28481105
Chem Rev. 2010 Jan;110(1):240-67
pubmed: 19715293
Nat Nanotechnol. 2020 Jul;15(7):529-544
pubmed: 32231270
Nat Commun. 2015 Jun 24;6:7467
pubmed: 26105012
J Appl Crystallogr. 2015 Mar 24;48(Pt 2):528-532
pubmed: 25844081
Nature. 2018 Jun;558(7708):60-67
pubmed: 29875487
Nat Commun. 2015 Sep 03;6:8181
pubmed: 26333363

Auteurs

Valeria Bragaglia (V)

IBM Research Europe-Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland.

Vara Prasad Jonnalagadda (VP)

IBM Research Europe-Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland.

Marilyne Sousa (M)

IBM Research Europe-Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland.

Syed Ghazi Sarwat (SG)

IBM Research Europe-Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland.

Benedikt Kersting (B)

IBM Research Europe-Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland.

Abu Sebastian (A)

IBM Research Europe-Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland.

Classifications MeSH