Ion-Movement-Based Synaptic Device for Brain-Inspired Computing.

brain-inspired computing ion movement synaptic device

Journal

Nanomaterials (Basel, Switzerland)
ISSN: 2079-4991
Titre abrégé: Nanomaterials (Basel)
Pays: Switzerland
ID NLM: 101610216

Informations de publication

Date de publication:
18 May 2022
Historique:
received: 21 04 2022
revised: 13 05 2022
accepted: 16 05 2022
entrez: 28 5 2022
pubmed: 29 5 2022
medline: 29 5 2022
Statut: epublish

Résumé

As the amount of data has grown exponentially with the advent of artificial intelligence and the Internet of Things, computing systems with high energy efficiency, high scalability, and high processing speed are urgently required. Unlike traditional digital computing, which suffers from the von Neumann bottleneck, brain-inspired computing can provide efficient, parallel, and low-power computation based on analog changes in synaptic connections between neurons. Synapse nodes in brain-inspired computing have been typically implemented with dozens of silicon transistors, which is an energy-intensive and non-scalable approach. Ion-movement-based synaptic devices for brain-inspired computing have attracted increasing attention for mimicking the performance of the biological synapse in the human brain due to their low area and low energy costs. This paper discusses the recent development of ion-movement-based synaptic devices for hardware implementation of brain-inspired computing and their principles of operation. From the perspective of the device-level requirements for brain-inspired computing, we address the advantages, challenges, and future prospects associated with different types of ion-movement-based synaptic devices.

Identifiants

pubmed: 35630952
pii: nano12101728
doi: 10.3390/nano12101728
pmc: PMC9148095
pii:
doi:

Types de publication

Journal Article Review

Langues

eng

Subventions

Organisme : Konkuk University
ID : Research Fund in 2020

Références

Science. 2019 May 10;364(6440):570-574
pubmed: 31023890
Sci Adv. 2020 Jul 3;6(27):
pubmed: 32937458
Nat Commun. 2013;4:2676
pubmed: 24177330
Adv Mater. 2013 Mar 25;25(12):1774-9
pubmed: 23355110
Nature. 1998 Sep 3;395(6697):37-44
pubmed: 9738497
Nano Lett. 2021 Jul 28;21(14):6111-6116
pubmed: 34231360
Nat Commun. 2016 May 04;7:11502
pubmed: 27143121
Nano Lett. 2009 Jan;9(1):496-500
pubmed: 19113891
Front Neurosci. 2011 May 31;5:73
pubmed: 21747754
Nature. 2020 Apr;580(7804):478-482
pubmed: 32322080
Adv Mater. 2017 Jul;29(27):
pubmed: 28485032
ACS Nano. 2017 Mar 28;11(3):2814-2822
pubmed: 28221756
Nature. 2015 May 28;521(7553):436-44
pubmed: 26017442
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12017-12022
pubmed: 27790983
Nat Mater. 2007 Nov;6(11):833-40
pubmed: 17972938
Adv Mater. 2012 Jan 10;24(2):252-67
pubmed: 21989741
Nat Commun. 2020 Mar 18;11(1):1439
pubmed: 32188861
Nature. 2017 Oct 18;550(7676):354-359
pubmed: 29052630
Nano Lett. 2019 Feb 13;19(2):839-849
pubmed: 30608706
J Neurosci. 1998 Dec 15;18(24):10464-72
pubmed: 9852584
Nat Mater. 2013 Feb;12(2):114-7
pubmed: 23241533
Adv Mater. 2020 Feb;32(7):e1905764
pubmed: 31850652
Adv Mater. 2020 Apr;32(15):e1903558
pubmed: 31559670
Nanotechnology. 2011 Jun 24;22(25):254003
pubmed: 21572191
Nat Commun. 2020 Apr 20;11(1):1861
pubmed: 32313096
Nat Commun. 2020 Mar 13;11(1):1391
pubmed: 32170177
Nat Commun. 2020 Jan 2;11(1):51
pubmed: 31896758
Nano Lett. 2019 Apr 10;19(4):2411-2417
pubmed: 30896171
Nat Mater. 2018 Apr;17(4):335-340
pubmed: 29358642
Adv Mater. 2019 Jan;31(3):e1806227
pubmed: 30485567
Adv Mater. 2018 Jul 23;:e1802353
pubmed: 30033599
Adv Mater. 2018 Jan;30(1):
pubmed: 28985005
ACS Appl Mater Interfaces. 2019 Oct 23;11(42):38982-38992
pubmed: 31559816
ACS Appl Mater Interfaces. 2020 Jan 8;12(1):1069-1077
pubmed: 31820625
Nano Lett. 2010 Apr 14;10(4):1297-301
pubmed: 20192230
Nat Nanotechnol. 2020 Jul;15(7):517-528
pubmed: 32123381
ACS Nano. 2014 Jul 22;8(7):6998-7004
pubmed: 24884237
Annu Rev Physiol. 2002;64:355-405
pubmed: 11826273
ACS Nano. 2017 Apr 25;11(4):4097-4104
pubmed: 28319363
ACS Nano. 2014 Oct 28;8(10):10262-9
pubmed: 25255038
IEEE Trans Biomed Circuits Syst. 2021 Jun;15(3):606-616
pubmed: 34156947
Nat Mater. 2012 Oct;11(10):860-4
pubmed: 22983431
Science. 1997 Jan 10;275(5297):213-5
pubmed: 8985014
Nano Lett. 2014 May 14;14(5):2401-6
pubmed: 24720425
Nature. 2018 Jun;558(7708):60-67
pubmed: 29875487
Nanoscale. 2016 Aug 7;8(29):13828-37
pubmed: 27150952
Nat Commun. 2021 Apr 30;12(1):2480
pubmed: 33931638
Nanotechnology. 2013 Sep 27;24(38):382001
pubmed: 23999572
Nat Mater. 2017 Apr;16(4):414-418
pubmed: 28218920
Nanoscale. 2020 Jul 21;12(27):14339-14368
pubmed: 32373884
Nat Commun. 2020 Jun 19;11(1):3134
pubmed: 32561717
Nanoscale. 2020 Jan 2;12(2):720-730
pubmed: 31829372
Nat Commun. 2017 Apr 03;8:14736
pubmed: 28368007
IEEE Trans Cybern. 2020 Jul;50(7):2935-2945
pubmed: 31751264
Nat Commun. 2017 May 17;8:15217
pubmed: 28513590
Adv Mater. 2018 Mar;30(9):
pubmed: 29318659
Nat Commun. 2018 May 29;9(1):2102
pubmed: 29844421
Nat Mater. 2018 Dec;17(12):1095-1100
pubmed: 30349031
Behav Anal. 2012 Spring;35(1):1-16
pubmed: 22942530
Nat Mater. 2013 Jul;12(7):617-21
pubmed: 23685861
Nat Nanotechnol. 2013 Jan;8(1):13-24
pubmed: 23269430
Nano Lett. 2017 Mar 8;17(3):1949-1955
pubmed: 28231005

Auteurs

Chansoo Yoon (C)

Division of Quantum Phases & Devices, Department of Physics, Konkuk University, Seoul 05029, Korea.

Gwangtaek Oh (G)

Division of Quantum Phases & Devices, Department of Physics, Konkuk University, Seoul 05029, Korea.

Bae Ho Park (BH)

Division of Quantum Phases & Devices, Department of Physics, Konkuk University, Seoul 05029, Korea.

Classifications MeSH