Application of Response Surface Methodology for Optimization of Nanosized Zinc Oxide Synthesis Conditions by Electrospinning Technique.
electrospinning
optimization
response surface methodology
zinc oxide
Journal
Nanomaterials (Basel, Switzerland)
ISSN: 2079-4991
Titre abrégé: Nanomaterials (Basel)
Pays: Switzerland
ID NLM: 101610216
Informations de publication
Date de publication:
18 May 2022
18 May 2022
Historique:
received:
26
04
2022
revised:
10
05
2022
accepted:
16
05
2022
entrez:
28
5
2022
pubmed:
29
5
2022
medline:
29
5
2022
Statut:
epublish
Résumé
Zinc oxide (ZnO) is a well-known semiconductor material due to its excellent electrical, mechanical, and unique optical properties. ZnO nanoparticles are widely used for the industrial-scale manufacture of microelectronic and optoelectronic devices, including metal oxide semiconductor (MOS) gas sensors, light-emitting diodes, transistors, capacitors, and solar cells. This study proposes optimization of synthesis parameters of nanosized ZnO by the electrospinning technique. A Box-Behnken design (BB) has been applied using response surface methodology (RSM) to optimize the selected electrospinning and sintering conditions. The effects of the applied voltage, tip-to-collector distance, and annealing temperature on the size of ZnO particles were successfully investigated. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images confirm the formation of polyvinylpyrrolidone-zinc acetate (PVP-ZnAc) fibers and nanostructured ZnO after annealing. X-ray diffraction (XRD) patterns indicate a pure phase of the hexagonal structure of ZnO with high crystallinity. Minimal-sized ZnO nanoparticles were synthesized at a constant applied potential of 16 kV, with a distance between collector and nozzle of 12 cm, flow rate of 1 mL/h, and calcination temperature of 600 °C. The results suggest that nanosized ZnO with precise control of size and morphology can be fabricated by varying electrospinning conditions, precursor solution concentration, and sintering temperature.
Identifiants
pubmed: 35630955
pii: nano12101733
doi: 10.3390/nano12101733
pmc: PMC9144791
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Nazarbayev University
ID : OPCRP2021001
Références
Chem Rev. 2019 Apr 24;119(8):5298-5415
pubmed: 30916938
J Chem Phys. 2017 Oct 21;147(15):154102
pubmed: 29055348
Nanomaterials (Basel). 2022 Apr 09;12(8):
pubmed: 35457993
J Dairy Sci. 2021 Jan;104(1):151-166
pubmed: 33162079
Nanotechnology. 2015 Mar 13;26(10):105501
pubmed: 25694034
Artif Cells Nanomed Biotechnol. 2016;44(1):328-33
pubmed: 25154745
Sci Total Environ. 2021 Mar 10;759:143470
pubmed: 33248790
J Hazard Mater. 2009 Dec 30;172(2-3):1388-93
pubmed: 19717231
J Environ Sci (China). 2010;22(8):1281-9
pubmed: 21179970
Acc Chem Res. 2010 Feb 16;43(2):190-200
pubmed: 19827808
RSC Adv. 2020 Oct 30;10(65):39786-39807
pubmed: 35515369
Talanta. 2008 Sep 15;76(5):965-77
pubmed: 18761143
J Hazard Mater. 2009 Apr 30;163(2-3):650-6
pubmed: 18771848
Sci Rep. 2016 May 27;6:26736
pubmed: 27231026
J Chem Phys. 2004 Sep 15;121(11):5434-44
pubmed: 15352838
Nanomaterials (Basel). 2022 Apr 10;12(8):
pubmed: 35457994