Integrin/TGF-β1 Inhibitor GLPG-0187 Blocks SARS-CoV-2 Delta and Omicron Pseudovirus Infection of Airway Epithelial Cells In Vitro, Which Could Attenuate Disease Severity.
ACE2
COVID-19
Delta
GLPG-0187
HSAE
MEKi
Omicron
SARS-CoV-2
TGF-β1
integrin
Journal
Pharmaceuticals (Basel, Switzerland)
ISSN: 1424-8247
Titre abrégé: Pharmaceuticals (Basel)
Pays: Switzerland
ID NLM: 101238453
Informations de publication
Date de publication:
17 May 2022
17 May 2022
Historique:
received:
14
03
2022
revised:
15
04
2022
accepted:
05
05
2022
entrez:
28
5
2022
pubmed:
29
5
2022
medline:
29
5
2022
Statut:
epublish
Résumé
As COVID-19 continues to pose major risk for vulnerable populations, including the elderly, immunocompromised, patients with cancer, and those with contraindications to vaccination, novel treatment strategies are urgently needed. SARS-CoV-2 infects target cells via RGD-binding integrins, either independently or as a co-receptor with surface receptor angiotensin-converting enzyme 2 (ACE2). We used pan-integrin inhibitor GLPG-0187 to demonstrate the blockade of SARS-CoV-2 pseudovirus infection of target cells. Omicron pseudovirus infected normal human small airway epithelial (HSAE) cells significantly less than D614G or Delta variant pseudovirus, and GLPG-0187 effectively blocked SARS-CoV-2 pseudovirus infection in a dose-dependent manner across multiple viral variants. GLPG-0187 inhibited Omicron and Delta pseudovirus infection of HSAE cells more significantly than other variants. Pre-treatment of HSAE cells with MEK inhibitor (MEKi) VS-6766 enhanced the inhibition of pseudovirus infection by GLPG-0187. Because integrins activate transforming growth factor beta (TGF-β) signaling, we compared the plasma levels of active and total TGF-β in COVID-19+ patients. The plasma TGF-β1 levels correlated with age, race, and number of medications upon presentation with COVID-19, but not with sex. Total plasma TGF-β1 levels correlated with activated TGF-β1 levels. Moreover, the inhibition of integrin signaling prevents SARS-CoV-2 Delta and Omicron pseudovirus infectivity, and it may mitigate COVID-19 severity through decreased TGF-β1 activation. This therapeutic strategy may be further explored through clinical testing in vulnerable and unvaccinated populations.
Identifiants
pubmed: 35631444
pii: ph15050618
doi: 10.3390/ph15050618
pmc: PMC9143518
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Brown University
ID : Brown University COVID-19 Seed Grant
Organisme : NIH HHS
ID : P20 GM119943
Pays : United States
Organisme : NIGMS NIH HHS
ID : U54GM115677
Pays : United States
Organisme : NIGMS NIH HHS
ID : 5P30GM122732-05
Pays : United States
Organisme : Rhode Island Foundation
ID : 841-20210959
Commentaires et corrections
Type : UpdateOf
Références
JACC Basic Transl Sci. 2021 Jan;6(1):1-8
pubmed: 33102950
Cell Rep. 2021 Oct 12;37(2):109825
pubmed: 34614392
PLoS One. 2021 Jun 23;16(6):e0253347
pubmed: 34161337
Invest New Drugs. 2016 Apr;34(2):184-92
pubmed: 26792581
Nat Rev Clin Oncol. 2021 Dec;18(12):773-791
pubmed: 34285417
Eur Respir J. 2021 Jul 1;58(1):
pubmed: 33419885
Biomolecules. 2021 Jul 16;11(7):
pubmed: 34356672
Lancet. 2022 Jan 29;399(10323):437-446
pubmed: 35065011
J Infect Dis. 2020 Aug 17;222(6):894-898
pubmed: 32582936
Cell. 2002 Sep 20;110(6):673-87
pubmed: 12297042
Cell. 2022 Feb 3;185(3):457-466.e4
pubmed: 34995482
Science. 2005 Sep 16;309(5742):1864-8
pubmed: 16166518
Respir Res. 2020 Jul 14;21(1):182
pubmed: 32664949
Nature. 2021 Dec;600(7888):295-301
pubmed: 34695836
Nat Commun. 2021 Mar 30;12(1):1961
pubmed: 33785765
Am J Respir Crit Care Med. 2020 Jul 15;202(2):219-229
pubmed: 32432483
Cell. 2022 Feb 3;185(3):447-456.e11
pubmed: 35026151
Sci Rep. 2021 Oct 14;11(1):20398
pubmed: 34650161
Oncotarget. 2020 Nov 17;11(46):4201-4223
pubmed: 33245731
Atherosclerosis. 2021 Apr;322:39-50
pubmed: 33706082
Nat Rev Nephrol. 2016 Jun;12(6):325-38
pubmed: 27108839
Clin Pract. 2021 Oct 21;11(4):778-784
pubmed: 34698149
J Autoimmun. 2022 Feb;127:102792
pubmed: 34995958
Cell Mol Life Sci. 2004 Nov;61(21):2738-43
pubmed: 15549175
J Virol. 2015 Feb;89(4):1954-64
pubmed: 25428871
Cell. 1987 Feb 27;48(4):549-54
pubmed: 3028640
J Clin Med. 2021 Dec 23;11(1):
pubmed: 35011781
Ann Am Thorac Soc. 2020 Oct;17(10):1336-1339
pubmed: 32643398
Int J Biol Sci. 2020 Apr 21;16(11):1954-1955
pubmed: 32398962
Mucosal Immunol. 2018 Mar;11(2):523-535
pubmed: 29067998
Front Physiol. 2020 Aug 04;11:989
pubmed: 32848893
Cold Spring Harb Perspect Biol. 2011 Nov 01;3(11):a005017
pubmed: 21900405
Life Sci. 2021 Nov 1;284:119881
pubmed: 34389403
Proc Natl Acad Sci U S A. 2020 May 26;117(21):11727-11734
pubmed: 32376634
Curr Opin Cell Biol. 1993 Oct;5(5):864-8
pubmed: 7694604
Antiviral Res. 2020 May;177:104759
pubmed: 32130973
Elife. 2021 Jan 14;10:
pubmed: 33443016
Cold Spring Harb Perspect Biol. 2017 Jun 1;9(6):
pubmed: 28108486
Nature. 2022 Mar;603(7902):687-692
pubmed: 35062015
EClinicalMedicine. 2021 Oct;40:101125
pubmed: 34522871
Clin Transl Immunology. 2021 Mar 18;10(3):e1240
pubmed: 33747508
Breast Cancer Res. 2015 Feb 25;17:28
pubmed: 25849225
Arch Virol. 2015 Nov;160(11):2669-81
pubmed: 26321473
Annu Rev Immunol. 2014;32:51-82
pubmed: 24313777
Pharmacol Res Perspect. 2021 Feb;9(1):e00698
pubmed: 33369210
Signal Transduct Target Ther. 2021 Jun 11;6(1):233
pubmed: 34117216
Annu Rev Biochem. 1988;57:375-413
pubmed: 2972252