Importance of Spray-Wall Interaction and Post-Deposition Liquid Motion in the Transport and Delivery of Pharmaceutical Nasal Sprays.

CFD droplet deposition droplet impaction liquid layer liquid motion nasal spray spray delivery spray modeling spray–wall interaction surface film dynamics

Journal

Pharmaceutics
ISSN: 1999-4923
Titre abrégé: Pharmaceutics
Pays: Switzerland
ID NLM: 101534003

Informations de publication

Date de publication:
28 Apr 2022
Historique:
received: 01 04 2022
revised: 22 04 2022
accepted: 24 04 2022
entrez: 28 5 2022
pubmed: 29 5 2022
medline: 29 5 2022
Statut: epublish

Résumé

Nasal sprays, which produce relatively large pharmaceutical droplets and have high momentum, are primarily used to deliver locally acting drugs to the nasal mucosa. Depending on spray pump administration conditions and insertion angles, nasal sprays may interact with the nasal surface in ways that creates complex droplet-wall interactions followed by significant liquid motion after initial wall contact. Additionally, liquid motion can occur after deposition as the spray liquid moves in bulk along the nasal surface. It is difficult or impossible to capture these conditions with commonly used computational fluid dynamics (CFD) models of spray droplet transport that typically employ a deposit-on-touch boundary condition. Hence, an updated CFD framework with a new spray-wall interaction (SWI) model in tandem with a post-deposition liquid motion (PDLM) model was developed and applied to evaluate nasal spray delivery for Flonase and Flonase Sensimist products. For both nasal spray products, CFD revealed significant effects of the spray momentum on surface liquid motion, as well as motion of the surface film due to airflow generated shear stress and gravity. With Flonase, these factors substantially influenced the final resting place of the liquid. For Flonase Sensimist, anterior and posterior liquid movements were approximately balanced over time. As a result, comparisons with concurrent in vitro experimental results were substantially improved for Flonase compared with the traditional deposit-on-touch boundary condition. The new SWI-PDLM model highlights the dynamicenvironment that occurs when a nasal spray interacts with a nasal wall surface and can be used to better understand the delivery of current nasal spray products as well as to develop new nasal drug delivery strategies with improved regional targeting.

Identifiants

pubmed: 35631539
pii: pharmaceutics14050956
doi: 10.3390/pharmaceutics14050956
pmc: PMC9145669
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : United States Food and Drug Administration
ID : Contract HHSF223201810144C

Références

Drug Dev Ind Pharm. 2008 Sep;34(9):923-9
pubmed: 18800252
Pharm Res. 2016 Apr;33(4):909-21
pubmed: 26689412
Ear Nose Throat J. 2021 Jun;100(5):295-301
pubmed: 33084428
Ther Deliv. 2020 Aug;11(8):485-495
pubmed: 32727298
Int J Pharm. 2021 Jan 25;593:120103
pubmed: 33242586
AAPS PharmSciTech. 2018 Oct;19(7):2767-2777
pubmed: 29948982
J Biomech. 2019 Mar 6;85:74-83
pubmed: 30685195
PLoS One. 2019 Sep 6;14(9):e0221330
pubmed: 31490971
Sci Rep. 2020 Jun 29;10(1):10568
pubmed: 32601278
J Aerosol Med Pulm Drug Deliv. 2016 Oct;29(5):416-431
pubmed: 26824178
Pharm Res. 2010 Jan;27(1):30-6
pubmed: 19902337
Int J Pharm. 2020 Jan 25;574:118911
pubmed: 31809854
Comput Biol Med. 2019 Apr;107:206-217
pubmed: 30851506
J Allergy Clin Immunol. 2010 Feb;125(2 Suppl 2):S103-15
pubmed: 20176255
Eur J Pharm Sci. 2008 Dec 18;35(5):417-26
pubmed: 18832029
Adv Drug Deliv Rev. 2021 Mar;170:340-352
pubmed: 32918968
J Aerosol Med Pulm Drug Deliv. 2019 Dec;32(6):374-385
pubmed: 31464547
Int Forum Allergy Rhinol. 2020 Jan;10(1):29-40
pubmed: 31691535
Comput Biol Med. 2020 Aug;123:103896
pubmed: 32768043
J Aerosol Med. 2006 Winter;19(4):510-21
pubmed: 17196079
Otolaryngol Head Neck Surg. 2012 Feb;146(2):313-9
pubmed: 22049020
Mol Pharm. 2018 Apr 2;15(4):1392-1402
pubmed: 29485888
J Aerosol Med. 2007 Spring;20(1):59-74
pubmed: 17388754
Int J Pharm. 2020 May 30;582:119341
pubmed: 32305365
Adv Drug Deliv Rev. 2021 Aug;175:113826
pubmed: 34119575
Pharm Res. 2016 Jun;33(6):1527-41
pubmed: 26943943
Int J Pharm. 2010 Mar 30;388(1-2):82-7
pubmed: 20043981
J Aerosol Med Pulm Drug Deliv. 2015 Oct;28(5):320-33
pubmed: 25679810
Drug Deliv Transl Res. 2013 Feb;3(1):42-62
pubmed: 23316447
Pharm Res. 2018 Mar 26;35(5):108
pubmed: 29582159
J Aerosol Med. 2001 Summer;14(2):267-80
pubmed: 11681658
Environ Health Perspect. 1990 Apr;85:209-18
pubmed: 2200663
Crit Rev Ther Drug Carrier Syst. 2004;21(1):21-66
pubmed: 15099184
Pharmaceutics. 2021 Jul 14;13(7):
pubmed: 34371770
Drug Dev Ind Pharm. 2003 Oct;29(9):1005-12
pubmed: 14606664
J Biomech. 2021 Jun 23;123:110490
pubmed: 34022532
Pharmaceutics. 2021 Jun 18;13(6):
pubmed: 34207109
J Colloid Interface Sci. 2011 Oct 15;362(2):540-52
pubmed: 21763664
PLoS One. 2020 Aug 5;15(8):e0236063
pubmed: 32756567
Int J Pharm. 2019 Apr 20;561:47-65
pubmed: 30822505
AAPS J. 2013 Jul;15(3):875-83
pubmed: 23686396
J Aerosol Med Pulm Drug Deliv. 2019 Jun;32(3):132-148
pubmed: 30556777
Expert Opin Drug Deliv. 2020 Feb;17(2):127-132
pubmed: 31928241
J Pharm Sci. 2016 Jun;105(6):1995-2004
pubmed: 27238495
Pharm Res. 2011 Aug;28(8):1895-904
pubmed: 21499839
J Aerosol Med Pulm Drug Deliv. 2015 Feb;28(1):59-67
pubmed: 24914675
J Aerosol Med Pulm Drug Deliv. 2017 Aug;30(4):230-246
pubmed: 28075184
Drug Dev Ind Pharm. 2000 Sep;26(9):975-83
pubmed: 10914322
J Aerosol Med Pulm Drug Deliv. 2015 Oct;28(5):334-40
pubmed: 25671692
J Pharm Sci. 2013 Mar;102(3):1024-35
pubmed: 23303644
J Aerosol Med. 2007 Winter;20(4):495-508
pubmed: 18158721
PLoS One. 2021 Jan 28;16(1):e0246007
pubmed: 33507973
J Pharm Sci. 2006 Sep;95(9):2029-40
pubmed: 16865693
AAPS PharmSciTech. 2005 Nov 17;6(4):E573-85
pubmed: 16408859
Langmuir. 2019 Aug 20;35(33):10752-10761
pubmed: 31339727
Pharm Res. 2005 Nov;22(11):1871-8
pubmed: 16091994
Comput Biol Med. 2016 Oct 1;77:40-8
pubmed: 27509293
Adv Drug Deliv Rev. 1998 Jan 5;29(1-2):13-38
pubmed: 10837578

Auteurs

Arun V Kolanjiyil (AV)

Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.

Ali Alfaifi (A)

Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.

Ghali Aladwani (G)

Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.

Laleh Golshahi (L)

Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.

Worth Longest (W)

Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA.

Classifications MeSH