Design and Characterization of an RF Applicator for In Vitro Tests of Electromagnetic Hyperthermia.
RF applicator
TEM mode
coaxial cable
electromagnetic hyperthermia
electromagnetic modelling
phantoms
temperature measurements
thermal modelling
thermal therapies
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
10 May 2022
10 May 2022
Historique:
received:
08
04
2022
revised:
04
05
2022
accepted:
06
05
2022
entrez:
28
5
2022
pubmed:
29
5
2022
medline:
1
6
2022
Statut:
epublish
Résumé
The evaluation of the biological effects of therapeutic hyperthermia in oncology and the precise quantification of thermal dose, when heating is coupled with radiotherapy or chemotherapy, are active fields of research. The reliable measurement of hyperthermia effects on cells and tissues requires a strong control of the delivered power and of the induced temperature rise. To this aim, we have developed a radiofrequency (RF) electromagnetic applicator operating at 434 MHz, specifically engineered for in vitro tests on 3D cell cultures. The applicator has been designed with the aid of an extensive modelling analysis, which combines electromagnetic and thermal simulations. The heating performance of the built prototype has been validated by means of temperature measurements carried out on tissue-mimicking phantoms and aimed at monitoring both spatial and temporal temperature variations. The experimental results demonstrate the capability of the RF applicator to produce a well-focused heating, with the possibility of modulating the duration of the heating transient and controlling the temperature rise in a specific target region, by simply tuning the effectively supplied power.
Identifiants
pubmed: 35632018
pii: s22103610
doi: 10.3390/s22103610
pmc: PMC9148047
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : European Metrology Programme for Innovation and Research
ID : 18HLT06 RaCHy
Références
J Microw Power. 1983 Dec;18(4):367-75
pubmed: 6561256
Int J Radiat Oncol Biol Phys. 1996 Jan 1;34(1):133-8
pubmed: 12118542
Int J Radiat Oncol Biol Phys. 1984 Jun;10(6):775-86
pubmed: 6735764
Ultrasound Med Biol. 1999 Jul;25(6):871-87
pubmed: 10461714
Nanomaterials (Basel). 2021 Aug 25;11(9):
pubmed: 34578497
Cell Death Discov. 2021 Aug 31;7(1):227
pubmed: 34465721
Sci Rep. 2020 Feb 3;10(1):1653
pubmed: 32015396
Cancers (Basel). 2021 Sep 15;13(18):
pubmed: 34572855
Int J Hyperthermia. 1991 Jul-Aug;7(4):605-11
pubmed: 1919155
Cancers (Basel). 2021 Feb 26;13(5):
pubmed: 33652744
Int J Hyperthermia. 2018 Sep;34(6):714-730
pubmed: 29509043
Nanotechnology. 2014 Nov 14;25(45):452001
pubmed: 25337919
Sci Rep. 2021 Mar 9;11(1):5503
pubmed: 33750833
Int J Hyperthermia. 2018 Jun;34(4):392-402
pubmed: 28641499
J Therm Biol. 2018 May;74:281-289
pubmed: 29801639
Clin Oncol (R Coll Radiol). 2007 Aug;19(6):418-26
pubmed: 17493790
Med Phys. 1994 Apr;21(4):547-50
pubmed: 8058021
Cancers (Basel). 2020 Sep 16;12(9):
pubmed: 32947939
Int J Hyperthermia. 2019;36(1):229-243
pubmed: 30700171
Materials (Basel). 2021 Feb 03;14(4):
pubmed: 33546176
Int J Hyperthermia. 2010;26(2):158-70
pubmed: 20146570
Int J Hyperthermia. 2017 Mar;33(2):160-169
pubmed: 27744728
Int J Hyperthermia. 2020 Dec;37(3):76-99
pubmed: 33426989
Phys Med Biol. 2005 Nov 7;50(21):5127-39
pubmed: 16237245
Int J Radiat Oncol Biol Phys. 2008 Mar 15;70(4):1176-82
pubmed: 17881144
Phys Med Biol. 2016 Feb 21;61(4):1596-607
pubmed: 26836010
Int J Hyperthermia. 2018 Sep;34(6):697-703
pubmed: 28828891
Int J Radiat Oncol Biol Phys. 1980 Nov;6(11):1507-17
pubmed: 7462053
Cancers (Basel). 2020 Mar 03;12(3):
pubmed: 32138173
IEEE Trans Biomed Eng. 1984 Jan;31(1):106-14
pubmed: 6724597
Molecules. 2020 Jun 22;25(12):
pubmed: 32580417
Int J Hyperthermia. 2012;28(5):456-65
pubmed: 22690856
Adv Drug Deliv Rev. 2020;163-164:84-97
pubmed: 31982475
Int J Hyperthermia. 1987 Sep-Oct;3(5):413-21
pubmed: 3681041