Research on the Error of Global Positioning System Based on Time Series Analysis.
Autoregressive (AR) model
Global Positioning System (GPS)
Kalman filtering
Time Series Analysis (TAS)
positioning precision
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
10 May 2022
10 May 2022
Historique:
received:
02
03
2022
revised:
09
04
2022
accepted:
15
04
2022
entrez:
28
5
2022
pubmed:
29
5
2022
medline:
1
6
2022
Statut:
epublish
Résumé
Due to the poor dynamic positioning precision of the Global Positioning System (GPS), Time Series Analysis (TSA) and Kalman filter technology are used to construct the positioning error of GPS. According to the statistical characteristics of the autocorrelation function and partial autocorrelation function of sample data, the Autoregressive (AR) model which is based on a Kalman filter is determined, and the error model of GPS is combined with a Kalman filter to eliminate the random error in GPS dynamic positioning data. The least square method is used for model parameter estimation and adaptability tests, and the experimental results show that the absolute value of the maximum error of longitude and latitude, the mean square error of longitude and latitude and average absolute error of longitude and latitude are all reduced, and the dynamic positioning precision after correction has been significantly improved.
Identifiants
pubmed: 35632023
pii: s22103614
doi: 10.3390/s22103614
pmc: PMC9145276
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Natural Science Foundation of Shaanxi Province
ID : 2020JM-488
Organisme : special scientific research project of the Education Department of Shaanxi Province
ID : 20JK0728
Références
Sensors (Basel). 2020 Nov 18;20(22):
pubmed: 33218107
Sensors (Basel). 2020 Dec 13;20(24):
pubmed: 33322229