Acoustic, Phononic, Brillouin Light Scattering and Faraday Wave-Based Frequency Combs: Physical Foundations and Applications.

Brillouin light scattering Faraday waves acoustic frequency comb acousto-optics gas bubbles liquid drops liquid metals nonlinear acoustics phononic frequency comb plasmonics vibrations

Journal

Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366

Informations de publication

Date de publication:
22 May 2022
Historique:
received: 30 04 2022
revised: 16 05 2022
accepted: 20 05 2022
entrez: 28 5 2022
pubmed: 29 5 2022
medline: 29 5 2022
Statut: epublish

Résumé

Frequency combs (FCs)-spectra containing equidistant coherent peaks-have enabled researchers and engineers to measure the frequencies of complex signals with high precision, thereby revolutionising the areas of sensing, metrology and communications and also benefiting the fundamental science. Although mostly optical FCs have found widespread applications thus far, in general FCs can be generated using waves other than light. Here, we review and summarise recent achievements in the emergent field of acoustic frequency combs (AFCs), including phononic FCs and relevant acousto-optical, Brillouin light scattering and Faraday wave-based techniques that have enabled the development of phonon lasers, quantum computers and advanced vibration sensors. In particular, our discussion is centred around potential applications of AFCs in precision measurements in various physical, chemical and biological systems in conditions where using light, and hence optical FCs, faces technical and fundamental limitations, which is, for example, the case in underwater distance measurements and biomedical imaging applications. This review article will also be of interest to readers seeking a discussion of specific theoretical aspects of different classes of AFCs. To that end, we support the mainstream discussion by the results of our original analysis and numerical simulations that can be used to design the spectra of AFCs generated using oscillations of gas bubbles in liquids, vibrations of liquid drops and plasmonic enhancement of Brillouin light scattering in metal nanostructures. We also discuss the application of non-toxic room-temperature liquid-metal alloys in the field of AFC generation.

Identifiants

pubmed: 35632330
pii: s22103921
doi: 10.3390/s22103921
pmc: PMC9143010
pii:
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Australian Research Council
ID : FT180100343

Références

Sci Rep. 2013;3:2132
pubmed: 23823569
ACS Nano. 2019 Jul 23;13(7):7388-7395
pubmed: 31245995
Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4208-13
pubmed: 25805822
Nat Methods. 2020 Sep;17(9):913-916
pubmed: 32747769
Opt Express. 2016 Mar 21;24(6):5773-83
pubmed: 27136775
Opt Lett. 2016 Apr 15;41(8):1736-9
pubmed: 27082332
Nature. 2019 Apr;568(7752):373-377
pubmed: 30858615
Opt Express. 2012 Jun 4;20(12):12860-5
pubmed: 22714312
J Acoust Soc Am. 2013 Nov;134(5):3425-34
pubmed: 24180753
Phys Rev Lett. 2009 Aug 7;103(6):064502
pubmed: 19792572
Nat Commun. 2015 Feb 05;6:6182
pubmed: 25652611
Phys Rev Lett. 2012 Dec 7;109(23):233901
pubmed: 23368202
Chemphyschem. 2006 Nov 13;7(11):2242-58
pubmed: 17086589
Sci Rep. 2020 Jan 30;10(1):1501
pubmed: 32001723
Nanomaterials (Basel). 2015 Apr 09;5(2):577-613
pubmed: 28347027
Phys Rev Lett. 2012 Jul 6;109(1):013603
pubmed: 23031105
Sci Rep. 2015 Dec 22;5:18139
pubmed: 26691398
Phys Rev Lett. 2019 Jul 12;123(2):024503
pubmed: 31386507
Nat Commun. 2015 Sep 01;6:8174
pubmed: 26323989
Opt Express. 2017 Apr 3;25(7):7496-7506
pubmed: 28380871
Phys Rev Lett. 2010 Feb 26;104(8):083901
pubmed: 20366930
Phys Rev Lett. 2012 Sep 14;109(11):114502
pubmed: 23005636
Phys Rev Lett. 2011 Jul 8;107(2):024502
pubmed: 21797610
Phys Rev Lett. 2008 Aug 1;101(5):056802
pubmed: 18764416
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 2):066309
pubmed: 23005208
Nature. 2003 Feb 6;421(6923):611-5
pubmed: 12571590
Phys Rev Lett. 2010 Feb 26;104(8):085501
pubmed: 20366943
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Jun;65(6):991-1000
pubmed: 29856716
ACS Appl Mater Interfaces. 2018 Sep 26;10(38):32526-32535
pubmed: 30168708
Phys Rev E. 2021 Sep;104(3-2):035104
pubmed: 34654181
Sci Rep. 2015 Feb 24;5:8546
pubmed: 25708871
Langmuir. 2013 Mar 19;29(11):3835-45
pubmed: 23428156
Chaos. 2018 Sep;28(9):096111
pubmed: 30278639
Nat Commun. 2015 Dec 02;6:10066
pubmed: 26625944
Phys Rev E. 2019 Nov;100(5-1):053106
pubmed: 31869993
Sci Rep. 2019 Mar 29;9(1):5345
pubmed: 30926856
Chem Rev. 2011 Jun 8;111(6):3828-57
pubmed: 21648956
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Aug;64(2 Pt 2):026301
pubmed: 11497693
Sci Rep. 2019 Jul 1;9(1):9452
pubmed: 31263233
Phys Rev Lett. 2012 Jan 20;108(3):034502
pubmed: 22400746
Phys Rev Lett. 2011 Jan 14;106(2):024503
pubmed: 21405233
Phys Rev Lett. 2010 Apr 9;104(14):140501
pubmed: 20481925
Nat Commun. 2016 Aug 09;7:12441
pubmed: 27503708
Science. 2016 May 13;352(6287):795-7
pubmed: 27127238
ACS Sens. 2019 Sep 27;4(9):2507-2514
pubmed: 31436434
Phys Rev Lett. 2010 Mar 12;104(10):104503
pubmed: 20366432
Anal Chem. 2015 Aug 4;87(15):7519-23
pubmed: 26196847
Nat Photonics. 2007 Dec 9;2:39-43
pubmed: 19812712
Phys Rev Lett. 2014 Feb 21;112(7):075505
pubmed: 24579614
Sci Rep. 2016 Sep 09;6:32892
pubmed: 27612092
IEEE J Quantum Electron. 2010 Jun 3;16(3):588-599
pubmed: 21359138
Nat Commun. 2018 May 4;9(1):1797
pubmed: 29728619
Sci Rep. 2020 May 22;10(1):8564
pubmed: 32444625
Micromachines (Basel). 2017;8(2):
pubmed: 29250438
Small. 2011 Aug 22;7(16):2341-7
pubmed: 21678553
Nano Lett. 2011 Dec 14;11(12):5333-8
pubmed: 22029387
Nat Commun. 2013;4:1599
pubmed: 23511464
Sci Rep. 2016 Mar 10;6:22920
pubmed: 26960430
Langmuir. 2008 Aug 5;24(15):8379-86
pubmed: 18582134
J Biomed Opt. 2018 Sep;23(9):1-11
pubmed: 30264554
Phys Rev Lett. 2019 Jan 11;122(1):011102
pubmed: 31012650
Nat Nanotechnol. 2014 Apr;9(4):290-4
pubmed: 24608232
Opt Express. 2020 Sep 28;28(20):29540-29552
pubmed: 33114852
Phys Chem Chem Phys. 2008 Aug 21;10(31):4516-34
pubmed: 18665301
Appl Phys B. 2018;124(8):161
pubmed: 30956412
Opt Lett. 2013 Jan 1;38(1):79-81
pubmed: 23282844
Sci Rep. 2021 Jan 8;11(1):38
pubmed: 33420180
Phys Rev Lett. 2010 Mar 12;104(10):107801
pubmed: 20366452
Chem Rev. 2019 Jul 10;119(13):7833-7847
pubmed: 31042024
Phys Rev Lett. 2012 Aug 24;109(8):080801
pubmed: 23002732
Nat Commun. 2017 Feb 14;8:14202
pubmed: 28195582
Phys Rev Lett. 2017 Jan 20;118(3):033903
pubmed: 28157346
Nature. 2012 May 30;485(7400):611-4
pubmed: 22660320
Chem Soc Rev. 2018 Jun 5;47(11):4073-4111
pubmed: 29611563
Phys Rev Lett. 2009 May 15;102(19):193902
pubmed: 19518952
IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(4):823-9
pubmed: 18238484
Adv Mater. 2017 Jul;29(27):
pubmed: 28417536

Auteurs

Ivan S Maksymov (IS)

Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.

Bui Quoc Huy Nguyen (BQ)

Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.

Andrey Pototsky (A)

Department of Mathematics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.

Sergey Suslov (S)

Department of Mathematics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.

Classifications MeSH