A SARS-CoV-2 Spike Ferritin Nanoparticle Vaccine Is Protective and Promotes a Strong Immunological Response in the Cynomolgus Macaque Coronavirus Disease 2019 (COVID-19) Model.
Army Liposomal Formulation QS-21
COVID-19
SARS-CoV-2
SpFN
aluminum hydroxide
ferritin nanoparticle
primate
vaccine
Journal
Vaccines
ISSN: 2076-393X
Titre abrégé: Vaccines (Basel)
Pays: Switzerland
ID NLM: 101629355
Informations de publication
Date de publication:
04 May 2022
04 May 2022
Historique:
received:
12
04
2022
revised:
29
04
2022
accepted:
01
05
2022
entrez:
28
5
2022
pubmed:
29
5
2022
medline:
29
5
2022
Statut:
epublish
Résumé
The COVID-19 pandemic has had a staggering impact on social, economic, and public health systems worldwide. Vaccine development and mobilization against SARS-CoV-2 (the etiologic agent of COVID-19) has been rapid. However, novel strategies are still necessary to slow the pandemic, and this includes new approaches to vaccine development and/or delivery that will improve vaccination compliance and demonstrate efficacy against emerging variants. Here, we report on the immunogenicity and efficacy of a SARS-CoV-2 vaccine comprising stabilized, pre-fusion spike protein trimers displayed on a ferritin nanoparticle (SpFN) adjuvanted with either conventional aluminum hydroxide or the Army Liposomal Formulation QS-21 (ALFQ) in a cynomolgus macaque COVID-19 model. Vaccination resulted in robust cell-mediated and humoral responses and a significant reduction in lung lesions following SARS-CoV-2 infection. The strength of the immune response suggests that dose sparing through reduced or single dosing in primates may be possible with this vaccine. Overall, the data support further evaluation of SpFN as a SARS-CoV-2 protein-based vaccine candidate with attention to fractional dosing and schedule optimization.
Identifiants
pubmed: 35632473
pii: vaccines10050717
doi: 10.3390/vaccines10050717
pmc: PMC9145473
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
Cell. 2021 Feb 18;184(4):861-880
pubmed: 33497610
Sci Transl Med. 2022 Feb 16;14(632):eabi5735
pubmed: 34914540
Proc Natl Acad Sci U S A. 2021 Sep 21;118(38):
pubmed: 34470866
Cell. 2020 Nov 12;183(4):996-1012.e19
pubmed: 33010815
N Engl J Med. 2012 Apr 5;366(14):1275-86
pubmed: 22475592
J Infect Dis. 2021 Feb 24;223(4):699-708
pubmed: 32851411
Front Immunol. 2020 Oct 07;11:576622
pubmed: 33117378
Nat Commun. 2021 Feb 24;12(1):1260
pubmed: 33627662
PLoS One. 2021 Feb 2;16(2):e0246366
pubmed: 33529233
Nature. 2020 Oct;586(7830):583-588
pubmed: 32731257
N Engl J Med. 2021 Mar 17;384(15):1468-1470
pubmed: 33730471
Front Med (Lausanne). 2020 Dec 03;7:594495
pubmed: 33344479
Nature. 2020 Sep;585(7824):268-272
pubmed: 32396922
Cell. 2020 Apr 16;181(2):271-280.e8
pubmed: 32142651
J Immunol Methods. 2019 Oct;473:112630
pubmed: 31301278
N Engl J Med. 2020 Dec 17;383(25):2439-2450
pubmed: 33053279
NPJ Vaccines. 2021 Dec 13;6(1):151
pubmed: 34903722
Nature. 2020 Oct;586(7830):578-582
pubmed: 32731258
N Engl J Med. 2020 Oct 15;383(16):1544-1555
pubmed: 32722908
Lancet. 2020 Aug 15;396(10249):467-478
pubmed: 32702298
Nat Med. 2018 Oct;24(10):1590-1598
pubmed: 30177821
NPJ Vaccines. 2021 Oct 28;6(1):129
pubmed: 34711815
N Engl J Med. 2020 Nov 12;383(20):1920-1931
pubmed: 32663912
Cell. 2020 Jun 25;181(7):1489-1501.e15
pubmed: 32473127
Nat Biotechnol. 2015 Jun;33(6):610-6
pubmed: 26006008
Cell. 2020 Apr 16;181(2):281-292.e6
pubmed: 32155444
BMC Bioinformatics. 2011 Mar 09;12:71
pubmed: 21385461
Viruses. 2012 Jun;4(6):1011-33
pubmed: 22816037
J Immunol Methods. 2011 Mar 7;366(1-2):8-19
pubmed: 21192942
Cell Rep. 2021 Dec 21;37(12):110143
pubmed: 34919799
Nat Immunol. 2021 Dec;22(12):1503-1514
pubmed: 34716452
Annu Rev Immunol. 2011;29:273-93
pubmed: 21219173
Science. 2020 Aug 14;369(6505):806-811
pubmed: 32434945
Nature. 2021 Apr;592(7853):283-289
pubmed: 33524990