Wetting Behavior of a Three-Phase System in Contact with a Surface.
Journal
Macromolecules
ISSN: 0024-9297
Titre abrégé: Macromolecules
Pays: United States
ID NLM: 0365316
Informations de publication
Date de publication:
24 May 2022
24 May 2022
Historique:
received:
16
12
2021
revised:
05
04
2022
entrez:
31
5
2022
pubmed:
1
6
2022
medline:
1
6
2022
Statut:
ppublish
Résumé
We extend the Cahn-Landau-de Gennes mean field theory of wetting in binary mixtures to understand the wetting thermodynamics of a three phase system (e.g., polymer dispersed liquid crystals or polymer-colloid mixtures) that is in contact with an external surface, which prefers one of the phases. Using a model free-energy, which has three minima in its landscape, we show that as the central minimum becomes more stable compared to the remaining ones, the bulk phase diagram encounters a triple point and then bifurcates and we observe a novel non-monotonic dependence of the surface tension as a function of the stability of the central minimum. We show that this non-monotonicity in surface tension is associated with a complete to partial wetting transition. We obtain the complete wetting phase behavior as a function of phase stability and the surface interaction parameters when the system is close to the bulk triple point. The model free-energy that we use is qualitatively similar to that of a renormalized free energy, which arises in the context of polymer-liquid crystal mixtures. Finally, we study the thermodynamics of wetting for an explicit polymer-liquid crystal mixture and show that its thermodynamics is similar to that of our model free-energy.
Identifiants
pubmed: 35634035
doi: 10.1021/acs.macromol.1c02559
pmc: PMC9134494
doi:
Types de publication
Journal Article
Langues
eng
Pagination
3886-3897Informations de copyright
© 2022 The Authors. Published by American Chemical Society.
Déclaration de conflit d'intérêts
The authors declare no competing financial interest.
Références
Phys Rev Lett. 2010 Jan 22;104(3):036101
pubmed: 20366660
Phys Rev Lett. 1991 Mar 11;66(10):1326-1329
pubmed: 10043177
Faraday Discuss. 2010;146:217-22; discussion 283-98, 395-401
pubmed: 21043423
Sci Rep. 2018 May 8;8(1):7169
pubmed: 29740096
Eur Phys J E Soft Matter. 2002 Sep;9(1):89-95
pubmed: 15010934
J Chem Phys. 2012 Nov 7;137(17):174901
pubmed: 23145744
Nat Commun. 2015 Sep 29;6:8485
pubmed: 26415623
J Chem Phys. 2009 Dec 28;131(24):244903
pubmed: 20059111
J Chem Phys. 2019 Jun 28;150(24):244903
pubmed: 31255080
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Feb;47(2):1437-1440
pubmed: 9960153
Phys Rev Lett. 1990 Jan 22;64(4):439-442
pubmed: 10041980
Nat Mater. 2006 Jan;5(1):39-43
pubmed: 16380730
Phys Rev B Condens Matter. 1990 May 1;41(13):9538-9539
pubmed: 9993308
J Chem Phys. 2019 Apr 28;150(16):164701
pubmed: 31042902
Eur Phys J E Soft Matter. 2002 Sep;9(1):79-87
pubmed: 15010933
J Phys Chem B. 2013 Oct 24;117(42):13154-63
pubmed: 23713546
Polymers (Basel). 2020 Jul 16;12(7):
pubmed: 32708547
Soft Matter. 2008 Jul 16;4(8):1555-1568
pubmed: 32907146
Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):3880-5
pubmed: 25775559
Nanoscale. 2019 Sep 21;11(35):16523-16533
pubmed: 31454013
J Phys Condens Matter. 2016 Jun 22;28(24):244016
pubmed: 27116351
Phys Rev Lett. 1990 Aug 27;65(9):1116-1119
pubmed: 10043109