Reverse total shoulder arthroplasty baseplate stability with locking vs. non-locking peripheral screws.

3D digital image correlation Biomechanics Glenoid baseplate Peripheral screw Reverse total shoulder arthroplasty Total shoulder arthroplasty

Journal

Clinical biomechanics (Bristol, Avon)
ISSN: 1879-1271
Titre abrégé: Clin Biomech (Bristol, Avon)
Pays: England
ID NLM: 8611877

Informations de publication

Date de publication:
06 2022
Historique:
received: 24 11 2021
revised: 29 04 2022
accepted: 04 05 2022
pubmed: 1 6 2022
medline: 18 6 2022
entrez: 31 5 2022
Statut: ppublish

Résumé

There are many options for glenosphere baseplate fixation commercially available, yet there is little biomechanical evidence supporting one type of fixation over another. In this study, we compared the biomechanical fixation of a reverse total shoulder glenoid baseplate secured with locking or non-locking peripheral screws. Both a non-augmented mini baseplate with full backing support and an augmented baseplate were testing after implantation in solid rigid polyurethane foam. Each baseplate was implanted with a 30 mm central compression screw and four peripheral screws, either locking or non-locking (15 mm anterior/posterior and 30 mm superior/inferior). A 1 Hz cyclic force of 0-750 N was applied at a 60 The amount of migration measured in the both the non-augmented and augment cases shows no significant differences between locking and non-locking cases at the final cycle count (non-augment: 5.66 +/- 2.29 μm vs. 3.71 +/- 1.23 μm; p = 0.095, augment: 15.43 +/- 8.49 μm vs. 12.46 +/- 3.24 μm; p = 0.314). Additionally, the amount of micromotion measured for both sample types shows the same lack of significant difference (non-augment: 10.79 +/- 5.22 μm vs. 10.16 +/- 7.61 μm; p = 0.388, augment: 55.03 +/- 10.13 μm vs. 54.84 +/- 10.65 μm; p = 0.968). The presence of locking versus non-locking peripheral screws does not make a significant difference on the overall stability of a glenoid baseplate, in both a no defect case with a non-augmented baseplate and a bone defect case with an augmented baseplate.

Sections du résumé

BACKGROUND
There are many options for glenosphere baseplate fixation commercially available, yet there is little biomechanical evidence supporting one type of fixation over another. In this study, we compared the biomechanical fixation of a reverse total shoulder glenoid baseplate secured with locking or non-locking peripheral screws.
METHODS
Both a non-augmented mini baseplate with full backing support and an augmented baseplate were testing after implantation in solid rigid polyurethane foam. Each baseplate was implanted with a 30 mm central compression screw and four peripheral screws, either locking or non-locking (15 mm anterior/posterior and 30 mm superior/inferior). A 1 Hz cyclic force of 0-750 N was applied at a 60
FINDINGS
The amount of migration measured in the both the non-augmented and augment cases shows no significant differences between locking and non-locking cases at the final cycle count (non-augment: 5.66 +/- 2.29 μm vs. 3.71 +/- 1.23 μm; p = 0.095, augment: 15.43 +/- 8.49 μm vs. 12.46 +/- 3.24 μm; p = 0.314). Additionally, the amount of micromotion measured for both sample types shows the same lack of significant difference (non-augment: 10.79 +/- 5.22 μm vs. 10.16 +/- 7.61 μm; p = 0.388, augment: 55.03 +/- 10.13 μm vs. 54.84 +/- 10.65 μm; p = 0.968).
INTERPRETATION
The presence of locking versus non-locking peripheral screws does not make a significant difference on the overall stability of a glenoid baseplate, in both a no defect case with a non-augmented baseplate and a bone defect case with an augmented baseplate.

Identifiants

pubmed: 35636305
pii: S0268-0033(22)00095-X
doi: 10.1016/j.clinbiomech.2022.105665
pii:
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

105665

Informations de copyright

Copyright © 2022. Published by Elsevier Ltd.

Auteurs

Elise J Martin (EJ)

Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA; Department of Orthopaedic Surgery, State University of New York at Buffalo, Buffalo, NY, USA.

Thomas R Duquin (TR)

Department of Orthopaedic Surgery, State University of New York at Buffalo, Buffalo, NY, USA.

Mark T Ehrensberger (MT)

Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA; Department of Orthopaedic Surgery, State University of New York at Buffalo, Buffalo, NY, USA. Electronic address: mte@buffalo.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH