Comparison of Grand Canonical and Conventional Molecular Dynamics Simulation Methods for Protein-Bound Water Networks.
Journal
ACS physical chemistry Au
ISSN: 2694-2445
Titre abrégé: ACS Phys Chem Au
Pays: United States
ID NLM: 9918300980006676
Informations de publication
Date de publication:
25 May 2022
25 May 2022
Historique:
received:
17
12
2021
revised:
28
01
2022
accepted:
28
01
2022
entrez:
31
5
2022
pubmed:
1
6
2022
medline:
1
6
2022
Statut:
ppublish
Résumé
Water molecules play important roles in all biochemical processes. Therefore, it is of key importance to obtain information of the structure, dynamics, and thermodynamics of water molecules around proteins. Numerous computational methods have been suggested with this aim. In this study, we compare the performance of conventional and grand-canonical Monte Carlo (GCMC) molecular dynamics (MD) simulations to sample the water structure, as well GCMC and grid-based inhomogeneous solvation theory (GIST) to describe the energetics of the water network. They are evaluated on two proteins: the buried ligand-binding site of a ferritin dimer and the solvent-exposed binding site of galectin-3. We show that GCMC/MD simulations significantly speed up the sampling and equilibration of water molecules in the buried binding site, thereby making the results more similar for simulations started from different states. Both GCMC/MD and conventional MD reproduce crystal-water molecules reasonably for the buried binding site. GIST analyses are normally based on restrained MD simulations. This improves the precision of the calculated energies, but the restraints also significantly affect both absolute and relative energies. Solvation free energies for individual water molecules calculated with and without restraints show a good correlation, but with large quantitative differences. Finally, we note that the solvation free energies calculated with GIST are ∼5 times larger than those estimated by GCMC owing to differences in the reference state.
Identifiants
pubmed: 35637786
doi: 10.1021/acsphyschemau.1c00052
pmc: PMC9136951
doi:
Types de publication
Journal Article
Langues
eng
Pagination
247-259Informations de copyright
© 2022 The Authors. Published by American Chemical Society.
Déclaration de conflit d'intérêts
The authors declare no competing financial interest.
Références
J Comput Chem. 2004 Jul 15;25(9):1157-74
pubmed: 15116359
J Chem Inf Model. 2020 Oct 26;60(10):4436-4441
pubmed: 32835483
J Biol Chem. 2009 Sep 4;284(36):24176-84
pubmed: 19605349
Nature. 2011 Oct 26;478(7370):467-8
pubmed: 22031438
Q Rev Biophys. 2012 Feb;45(1):1-25
pubmed: 22082669
PLoS Comput Biol. 2017 Jul 26;13(7):e1005659
pubmed: 28746339
J Med Chem. 2012 Feb 23;55(4):1424-44
pubmed: 22239221
J Chem Phys. 2004 Oct 1;121(13):6392-400
pubmed: 15446937
Biochemistry. 2012 Jan 10;51(1):296-306
pubmed: 22111949
Curr Top Med Chem. 2010;10(1):55-66
pubmed: 19929830
J Am Chem Soc. 2004 Jun 23;126(24):7683-9
pubmed: 15198616
J Chem Phys. 2008 Mar 21;128(11):115103
pubmed: 18361618
Biophys J. 1996 Aug;71(2):670-81
pubmed: 8842206
J Chem Theory Comput. 2020 Oct 13;16(10):6061-6076
pubmed: 32955877
J Chem Theory Comput. 2014 Jul 8;10(7):2632-47
pubmed: 26586503
Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):808-13
pubmed: 17204562
J Am Chem Soc. 2019 Feb 6;141(5):2012-2026
pubmed: 30618244
J Chem Theory Comput. 2015 Aug 11;11(8):3696-713
pubmed: 26574453
Phys Chem Chem Phys. 2007 Feb 7;9(5):573-81
pubmed: 17242738
Proteins. 2001 Sep 1;44(4):400-17
pubmed: 11484218
J Chem Theory Comput. 2018 Dec 11;14(12):6586-6597
pubmed: 30451501
J Am Chem Soc. 2015 Dec 2;137(47):14930-43
pubmed: 26509924
RSC Adv. 2020 Feb 26;10(14):8435-8443
pubmed: 35497843
J Chem Inf Model. 2019 Feb 25;59(2):754-765
pubmed: 30640456
J Comput Aided Mol Des. 1995 Dec;9(6):513-20
pubmed: 8789193
J Chem Phys. 2012 Jul 28;137(4):044101
pubmed: 22852591
J Chem Theory Comput. 2019 Apr 9;15(4):2684-2691
pubmed: 30835999
J Chem Theory Comput. 2017 Dec 12;13(12):6373-6381
pubmed: 29091438
Biophys J. 1995 Sep;69(3):810-24
pubmed: 8519982