A High-Valent Ru-PCP Pincer Catalyst for Hydrogenation of Carbonyl and Carboxyl Compounds under Molecular Hydrogen.

cooperative catalysis esters high-valent ruthenium hydrogenation pincer complexes

Journal

Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783

Informations de publication

Date de publication:
06 Jul 2022
Historique:
received: 10 04 2022
pubmed: 1 6 2022
medline: 1 6 2022
entrez: 31 5 2022
Statut: ppublish

Résumé

Low-valent metals traditionally dominate the domain of catalytic hydrogenation. However, metal-ligand cooperating (MLC) catalytic systems, operating through heterolytic H-H bond splitting by a Lewis acidic metal and a basic ligand site, do not require an electron-rich metal. On the contrary, high-valent metals that induce weaker back donation facilitate heterolytic bond activation. Here we report, for the first time, the efficient hydrogenation of carbonyl and carboxyl compounds under molecular hydrogen catalyzed by a structurally well-defined Ru

Identifiants

pubmed: 35638170
doi: 10.1002/chem.202201098
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202201098

Subventions

Organisme : German-Israeli Foundation for Scientific Research and Development
ID : I-1508-302.5/2019
Organisme : Israel Science Foundation
ID : 370/20
Organisme : State Key Laboratory of Bio-organic and Natural Products Chemistry
Organisme : the Neubauer Family Foundation

Informations de copyright

© 2022 Wiley-VCH GmbH.

Références

 
S. v. d. Hark, M. Härröd, P. Møller, J. Am. Oil Chem. Soc. 1999, 76, 1363-1370;
B. Chen, U. Dingerdissen, J. G. E. Krauter, H. G. J. Lansink Rotgerink, K. Moebus, D. J. Ostgard, P. Panster, T. H. Riermeier, S. Seebald, T. Tacke, H. Trauthwein, Appl. Catal. A 2005, 280, 17-46.
J. Seyden-Penne, Reductions by the Alumino- and Borohydrides in Organic Synthesis, VCH, Weinheim, 1991.
 
J. S. Carey, D. Laffan, C. Thomson, M. T. Williams, Org. Bio. Chem. 2006, 4, 2337-2347;
J. G. de Vries, C. J. Elsevier, Handbook of Homogeneous Hydrogenation. Wiley-VCH, Weinheim, 2007;
A. Kulkarni, B. Torok, Curr. Org. Synth. 2011, 8, 187-207.
 
K. Kon, W. Onodera, S. Takakusagi, K.-i. Shimizu, Catal. Sci. Technol. 2014, 4, 3705-3712;
J. Coetzee, D. L Dodds, J. Klankermayer, S. Brosinski, W. Leitner, A. M. Z. Slawin, D. J. Cole-Hamilton, Chem. Eur. J. 2013, 19, 11039-11050;
C. Hirosawa, N. Wakasa, T. Fuchikami, Tetrahedron Lett. 1996, 37, 6749-6752.
 
T. Ohkuma, H. Ooka, S. Hashiguchi, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 1995, 117, 2675-2676;
K.-J. Haack, S. Hashiguchi, A. Fujii, T. Ikariya, R. Noyori, Angew. Chem. Int. Ed. 1997, 36, 285-288;
Angew. Chem. 1997, 109, 297-300.
M. D. Fryzuk, P. A. MacNeil, Organometallics 1983, 2, 682-4.
J. Zhang, G. Leitus, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed. 2006, 45, 1113-1115;
Angew. Chem. 2006, 118, 1131-1133.
 
T. R. Cundari, T. R. Klinckman, P. T. Wolczanski, J. Am. Chem. Soc. 2002, 124, 1481-1487;
A. Ienco, M. J. Calhorda, J. Reinhold, F. Reineri, C. Bianchini, M. Peruzzini, F. Vizza, C. Mealli, J. Am. Chem. Soc. 2004, 126, 11954-11965;
P. Maire, T. Buttner, F. Breher, F. P. Le, H. Grutzmacher, Angew. Chem. Int. Ed. 2005, 44, 6318-6323;
Angew. Chem. 2005, 117, 6477-6481;
D. J. H. Emslie, J. M. Blackwell, J. F. Britten, L. E. Harrington, Organometallics 2006, 25, 2412-2414;
F. W. Patureau, S. de Boer, M. Kuil, J. Meeuwissen, P.-A. R. Breuil, M. A. Siegler, A. L. Spek, A. J. Sandee, B. de Bruin, J. N. H. Reek, J. Am. Chem. Soc. 2009, 131, 6683-6685;
C. Gunanathan, B. Gnanaprakasam, M. A. Iron, L. J. W. Shimon, D. Milstein, J. Am. Chem. Soc. 2010, 132, 14763-14765;
A. Scharf, I. Goldberg, A. Vigalok, J. Am. Chem. Soc. 2013, 135, 967-970;
J. H. Barnard, C. Wang, N. G. Berry, J. Xiao, Chem. Sci. 2013, 4, 1234-1244;
B. Saha, S. M. Wahidur Rahaman, P. Daw, G. Sengupta, J. K. Bera, Chem. Eur. J. 2014, 20, 6542-6551;
M. Vogt, A. Nerush, Y. Diskin-Posner, Y. Ben-David, D. Milstein, Chem. Sci. 2014, 5, 2043-2051;
M. Devillard, G. Bouhadir, D. Bourissou, Angew. Chem. Int. Ed. 2015, 54, 730-732;
Angew. Chem. 2015, 127, 740-742;
D. G. A. Verhoeven, M.-E. Moret, Dalton Trans. 2016, 45, 15762-15778;
M. R. Kita, A. J. M. Miller, Angew. Chem. Int. Ed. 2017, 56, 5498-5502;
Angew. Chem. 2017, 129, 5590-5594;
A. J. Kosanovich, C. H. Komatsu, N. Bhuvanesh, L. M. Pérez, O. V. Ozerov, Chem. Eur. J. 2018, 24, 13754-13757;
T. Higashi, H. Ando, S. Kusumoto, K. Nozaki, J. Am. Chem. Soc. 2019, 141, 2247-2250;
F. Freitag, T. Irrgang, R. Kempe, J. Am. Chem. Soc. 2019, 141, 11677-11685;
A. Singh, D. Gelman, ACS Catal. 2020, 10, 1246-1255;
P. Chakraborty, B. Sundararaju, E. Manoury, R. Poli, ACS Catal. 2021, 11, 11906-11920.
 
B. Askevold, J. T. Nieto, S. Tussupbayev, M. Diefenbach, E. Herdtweck, M. C. Holthausen, S. Schneider, Nat. Chem. 2011, 3, 532-537;
G. A. Filonenko, M. P. Conley, C. Coperet, M. Lutz, E. J. M. Hensen, E. A. Pidko, ACS Catal. 2013, 3, 2522-2526;
G. A. Filonenko, M. J. B. Aguila, E. N. Schulpen, R. van Putten, J. Wiecko, C. Mueller, L. Lefort, E. J. M. Hensen, E. A. Pidko, J. Am. Chem. Soc. 2015, 137, 7620-7623;
L. E. Eijsink, S. C. P. Perdriau, J. G. de Vries, E. Otten, Dalton Trans. 2016, 45, 16033-16039;
R. Adam, E. Alberico, W. Baumann, H.-J. Drexler, R. Jackstell, H. Junge, M. Beller, Chem. Eur. J. 2016, 22, 4991-5002;
P. Puylaert, R. van Heck, Y. Fan, A. Spannenberg, W. Baumann, M. Beller, J. Medlock, W. Bonrath, L. Lefort, S. Hinze, J. G. de Vries, Chem. Eur. J. 2017, 23, 8473-8481;
B. Guo, J. G. de Vries, E. Otten, Chem. Sci. 2019, 10, 10647-10652;
D. Spasyuk, S. Smith, D. G. Gusev, Angew. Chem. Int. Ed. 2012, 51, 2772-2775;
Angew. Chem. 2012, 124, 2826-2829.
 
S. Kusumoto, M. Akiyama, K. Nozaki, J. Am. Chem. Soc. 2013, 135, 18726-18729;
Y.-H. Chang, Y. Nakajima, H. Tanaka, K. Yoshizawa, F. Ozawa, J. Am. Chem. Soc. 2013, 135, 11791-11794;
M. Valencia, A. Pereira, H. Mueller-Bunz, T. R. Belderrain, P. J. Perez, M. Albrecht, Chem. Eur. J. 2017, 23, 8901-8911;
A. V. Polukeev, O. F. Wendt, J. Organomet. Chem. 2018, 867, 33-50.
 
B. Bichler, C. Holzhacker, B. Stoeger, M. Puchberger, L. F. Veiros, K. Kirchner, Organometallics 2013, 32, 4114-4121;
T. Xia, Z. Wei, B. Spiegelberg, H. Jiao, S. Hinze, J. G. de Vries, Chem. Eur. J. 2018, 24, 4043-4049;
C. Bornschein, C. S. Werkmeister, B. Wendt, B. H. Jiao, E. Alberico, W. Baumann, H. Junge, K. Junge, M. Beller, Nat. Commun. 2014, 5, 1-11;
G. Wienhoefer, I. Sorribes, A. Boddien, F. Westerhaus, K. Junge, H. Junge, R. Llusar, M. Beller, J. Am. Chem. Soc. 2011, 133, 12875-12879.
 
D. Spasyuk, C. Vicent, D. G. Gusev, J. Am. Chem. Soc. 2015, 137, 3743-3746;
G. Chelucci, S. Baldino, W. Baratta, Chem. Res. 2015, 48, 363-379;
W. Baratta, M. Ballico, G. Chelucci, K. Siega, P. Rigo, Angew. Chem. Int. Ed. 2008, 47, 4362-4365;
Angew. Chem. 2008, 120, 4434-4437.
 
S. Roesler, J. Obenauf, R. Kempe, J. Am. Chem. Soc. 2015, 137, 7998-8001;
V. Papa, J. R. Cabrero-Antonino, E. Alberico, A. Spanneberg, K. Junge, H. Junge, M. Beller, Chem. Sci. 2017, 8, 3576-3585;
M. Garbe, K. Junge, S. Walker, Z. Wei, H. Jiao, A. Spannenberg, S. Bachmann, M. Scalone, M. Beller, Angew. Chem. Int. Ed. 2017, 56, 11237-11241;
Angew. Chem. 2017, 129, 11389-11393;
R. van Putten, E. A. Uslamin, M. Garbe, C. Liu, A. Gonzalez-de-Castro, M. Lutz, K. Junge, E. J. M. Hensen, M. Beller, L. Lefort, E. A. Pidko, Angew. Chem. Int. Ed. 2017, 56, 7679;
Y.-Q. Zou, Y.-Q. S. Chakraborty, A. Nerush, D. Oren, Y. Diskin-Posner, Y. Ben-David, D. Milstein, ACS Catal. 2018, 8, 8014-8019;
V. Zubar, Y. Lebedev, L. M. Azofra, L. Cavallo, O. El-Sepelgy, M. Rueping, Angew. Chem. Int. Ed. 2018, 57, 13439-13443;
Angew. Chem. 2018, 130, 13627-13631;
F. Kallmeier, R. Kempe, Angew. Chem. Int. Ed. 2018, 57, 46-60;
Angew. Chem. 2018, 130, 48-63;
N. Gorgas, K. Kirchner, Acc. Chem. Res. 2018, 51, 1558-1569;
C. Baeumler, R. Kempe, Chem. Eur. J. 2018, 24, 8989-8993;
R. Buhaibeh, O. A. Filippov, A. Bruneau-Voisine, J. Willot, C. Duhayon, D. A. Valyaev, N. Lugan, Y. Canac, J.-B. Sortais, Angew. Chem. Int. Ed. 2019, 58, 6727-6731;
Angew. Chem. 2019, 131, 6799-6803;
W. Yang, I. Y. Chernyshov, R. K. A. van Schendel, M. Weber, C. Müller, G. A. Filonenko, E. A. Pidko, Nat. Commun. 2021, 12, 12;
J. M. Perez, R. Postolache, M. Castineira Reis, E. G. Sinnema, D. Vargova, F. de Vries, E. Otten, L. Ge, S. R. Harutyunyan, J. Am. Chem. Soc. 2021, 143, 20071-20076;
S. Weber, K. Kirchner, Top. Organomet. Chem. 2021, 68, 227-261.
 
M. Vogt, A. Nerush, M. A. Iron, G. Leitus, Y. Diskin-Posner, L. J. W. Shimon, Y. Ben-David, D. Milstein, J. Am. Chem. Soc. 2013, 135, 17004-17018;
M. Mastalir, M. Glatz, E. Pittenauer, G. Allmaier, K. Kirchner, Org. Lett. 2019, 21, 1116-1120;
A. Choualeb, A. J. Lough, D. G. Gusev, Organometallics 2007, 26, 3509-3515.
 
J. R. Cabrero-Antonino, R. Adam, V. Papa, M. Holsten, K. Junge, M. Beller, Chem. Sci. 2017, 8, 5536-5546;
H. Li, J. V. Obligacion, P. J. Chirik, M. B. Hall, ACS Catal. 2018, 8, 10606-10618;
W. Liu, B. Sahoo, K. Junge, M. Beller, Acc. Chem. Res. 2018, 51, 1858-1869;
M. Schlagbauer, F. Kallmeier, T. Irrgang, R. Kempe, Angew. Chem. Int. Ed. 2020, 59, 1485-1490;
Angew. Chem. 2020, 132, 1501-1506.
 
V. Cadierno, P. Crochet, J. Díez, J. García-Álvarez, S. E. García-Garrido, J. Gimeno, S. García-Granda, M. A. Rodríguez, Inorg. Chem. 2003, 42, 3293-3307;
K. A. Nolin, J. R. Krumper, M. D. Pluth, R. G. Bergman, F. D. Toste, J. Am. Chem. Soc. 2007, 129, 14684-14696;
P. M. Reis, P. J. Costa, C. C. Romão, J. A. Fernandes, M. J. Calhorda, B. Royo, Dalton Trans. 2008, 37, 1727-1733;
M. Naruto, S. Agrawal, K. Toda, S. Saito, Sci. Rep. 2017, 7, 3425-3425.
S. Musa, I. Shaposhnikov, S. Cohen, D. Gelman, Angew. Chem. Int. Ed. 2011, 50, 3533-3537;
Angew. Chem. 2011, 123, 3595-3599.
 
S. Musa, S. Fronton, L. Vaccaro, D. Gelman, Organometallics 2013, 32, 3069-3073;
C. Azerraf, S. Cohen, D. Gelman, Inorg. Chem. 2006, 45, 7010-7017;
G. A. Silantyev, O. A. Filippov, O. S. Musa, D. Gelman, D. N. V. Belkova, K. Weisz, L. M. Epstein, E. S. Shubina, Organometallics 2014, 33, 5964-5973.
Y.-F. Liang, L. Yang, T. Rogge, L. Ackermann, Chem. Eur. J. 2018, 24, 16548-16552.
J. Popp, S. Hanf, E. Hey-Hawkins, ACS Omega 2019, 4, 22540-22548.
 
S. Mujahed, F. Valentini, S. Cohen, L. Vaccaro, D. Gelman, ChemSusChem 2019, 12, 4693-4699;
S. Cohen, A. N. Bilyachenko, D. Gelman, Eur. J. Inorg. Chem. 2019, 19, 3203-3209;
S. Musa, A. Ghosh, L. Vaccaro, L. Ackermann, D. Gelman, Adv. Synth. Catal. 2015, 357, 2351-2357;
S. Musa, O. A. Filippov, N. V. Belkova, E. S. Shubina, G. A. Silantyev, L. Ackermann, D. Gelman, Chem. Eur. J. 2013, 19, 16906-16909.
Attempted hydrogenation of amides under these reaction conditions failed.
S. Cohen, V. Borin, I. Schapiro, S. Musa, S. De-Botton, N. V. Belkova, D. Gelman, ACS Catal. 2017, 7, 8139-8146.
We suspect that the need for a nearly stoichiometric base also indicates that deprotonation of the peripheral hydroxy group is essential for hydrogen splitting.
When acetophenone was subjected to the RT hydrogenation, the high isotope incorporation in the α-position of the alcohol was accompanied by a significant deuteration in the β-position due to the enolization of the starting material under the basic reaction conditions.
 
Y. Radchenko, S. Mujahed, S. Musa, D. Gelman, Inorg. Chim. Acta 2021, 521, 120350;
I. Kisets, D. Gelman, J. Organomet. Chem. 2021, 941, 121804.

Auteurs

Shrouq Mujahed (S)

Institute of Chemistry, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.

Evamarie Hey-Hawkins (E)

Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany.

Dmitri Gelman (D)

Institute of Chemistry, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.

Classifications MeSH