Clinical applicability of quantitative atrophy measures on MRI in patients suspected of Alzheimer's disease.

Alzheimer’s disease Gray matter volume (GMV) Hippocampal volume (HCV) Magnetic resonance imaging (MRI) Visual rating scales

Journal

European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774

Informations de publication

Date de publication:
Nov 2022
Historique:
received: 21 11 2020
accepted: 01 12 2021
revised: 03 11 2021
pubmed: 1 6 2022
medline: 19 11 2022
entrez: 31 5 2022
Statut: ppublish

Résumé

Neurodegeneration in suspected Alzheimer's disease can be determined using visual rating or quantitative volumetric assessments. We examined the feasibility of volumetric measurements of gray matter (GMV) and hippocampal volume (HCV) and compared their diagnostic performance with visual rating scales in academic and non-academic memory clinics. We included 231 patients attending local memory clinics (LMC) in the Netherlands and 501 of the academic Amsterdam Dementia Cohort (ADC). MRI scans were acquired using local protocols, including a T1-weighted sequence. Quantification of GMV and HCV was performed using FSL and FreeSurfer. Medial temporal atrophy and global atrophy were assessed with visual rating scales. ROC curves were derived to determine which measure discriminated best between cognitively normal (CN), mild cognitive impairment (MCI), and Alzheimer's dementia (AD). Patients attending LMC (age 70.9 ± 8.9 years; 47% females; 19% CN; 34% MCI; 47% AD) were older, had more cerebrovascular pathology, and had lower GMV and HCV compared to those of the ADC (age 64.9 ± 8.2 years; 42% females; 35% CN, 43% MCI, 22% AD). While visual ratings were feasible in > 95% of scans in both cohorts, quantification was achieved in 94-98% of ADC, but only 68-85% of LMC scans, depending on the software. Visual ratings and volumetric outcomes performed similarly in discriminating CN vs AD in both cohorts. In clinical settings, quantification of GM and hippocampal atrophy currently fails in up to one-third of scans, probably due to lack of standardized acquisition protocols. Diagnostic accuracy is similar for volumetric measures and visual rating scales, making the latter suited for clinical practice. In a real-life clinical setting, volumetric assessment of MRI scans in dementia patients may require acquisition protocol optimization and does not outperform visual rating scales. • In a real-life clinical setting, the diagnostic performance of visual rating scales is similar to that of automatic volumetric quantification and may be sufficient to distinguish Alzheimer's disease groups. • Volumetric assessment of gray matter and hippocampal volumes from MRI scans of patients attending non-academic memory clinics fails in up to 32% of cases. • Clinical MR acquisition protocols should be optimized to improve the output of quantitative software for segmentation of Alzheimer's disease-specific outcomes.

Identifiants

pubmed: 35639148
doi: 10.1007/s00330-021-08503-7
pii: 10.1007/s00330-021-08503-7
pmc: PMC9668763
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7789-7799

Subventions

Organisme : ZonMW Memorabel
ID : 733050201
Organisme : Innovative Medicines Initiative
ID : 115736
Organisme : JPND
ID : 33051106

Informations de copyright

© 2022. The Author(s).

Références

ten Kate M, Ingala S, Schwarz AJ et al (2018) Secondary prevention of Alzheimer’s dementia: neuroimaging contributions. Alzheimers Res Ther 10:112. https://doi.org/10.1186/s13195-018-0438-z
doi: 10.1186/s13195-018-0438-z
Scheltens P, Fox N, Barkhof F, De Carli C (2002) Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurol 1:13–21
doi: 10.1016/S1474-4422(02)00002-9
Van Maurik IS, Zwan MD, Tijms BM et al (2017) Interpreting biomarker results in individual patients with mild cognitive impairment in the Alzheimer’s Biomarkers in Daily Practice (ABIDE) project. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2017.2712
doi: 10.1001/jamaneurol.2017.2712
van Maurik IS, Vos SJ, Bos I et al (2019) Biomarker-based prognosis for people with mild cognitive impairment (ABIDE): a modelling study. Lancet Neurol 18:1034–1044. https://doi.org/10.1016/S1474-4422(19)30283-2
doi: 10.1016/S1474-4422(19)30283-2
Kinnunen KM, Cash DM, Poole T et al (2018) Presymptomatic atrophy in autosomal dominant Alzheimers disease: a serial magnetic resonance imaging study. Alzheimers Dement 14:43–53. https://doi.org/10.1016/j.jalz.2017.06.2268
Dubois B, Feldman HH, Jacova C et al (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6:734–746
doi: 10.1016/S1474-4422(07)70178-3
Frisoni GB, Jack CR, Bocchetta M et al (2015) The EADC-ADNI harmonized protocol for manual hippocampal segmentation on magnetic resonance: evidence of validity. Alzheimers Dement 11:111–125. https://doi.org/10.1016/j.jalz.2014.05.1756
Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279. https://doi.org/10.1016/j.jalz.2011.03.008
doi: 10.1016/j.jalz.2011.03.008
Jack CR, Albert MS, Knopman DS et al (2011) Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:257–262. https://doi.org/10.1016/j.jalz.2011.03.004
Jack CR, Bennett DA, Blennow K et al (2018) NIA-AA research framework: toward a biological definition of Alzheimers disease. Alzheimers Dement 14:535–562. https://doi.org/10.1016/j.jalz.2018.02.018
Van Der Flier WM, Scheltens P (2018) Amsterdam Dementia Cohort: performing research to optimize care. J Alzheimers Dis 62:1091–1111
doi: 10.3233/JAD-170850
Koedam ELGE, Lehmann M, Van Der Flier WM et al (2011) Visual assessment of posterior atrophy development of a MRI rating scale. Eur Radiol 21:2618–2625. https://doi.org/10.1007/s00330-011-2205-4
doi: 10.1007/s00330-011-2205-4
Vernooij MW, Pizzini FB, Schmidt R et al (2019) Dementia imaging in clinical practice: a European-wide survey of 193 centres and conclusions by the ESNR working group. Neuroradiology 61:633–642. https://doi.org/10.1007/s00234-019-02188-y
doi: 10.1007/s00234-019-02188-y
Scheltens P, Launer LJ, Barkhof F et al (1995) Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: interobserver reliability. J Neurol 242:557–560
doi: 10.1007/BF00868807
Frisoni GB, Fox NC, Jack CR et al (2010) The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 6:67–77. https://doi.org/10.1038/nrneurol.2009.215
doi: 10.1038/nrneurol.2009.215
Rhodius-Meester HFM, Benedictus MR, Wattjes MP et al (2017) MRI visual ratings of brain atrophy and white matter hyperintensities across the spectrum of cognitive decline are differently affected by age and diagnosis. Front Aging Neurosci 9:1–12. https://doi.org/10.3389/fnagi.2017.00117
doi: 10.3389/fnagi.2017.00117
Frisoni GB, Boccardi M, Barkhof F et al (2017) Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. Lancet Neurol 16:661–676. https://doi.org/10.1016/S1474-4422(17)30159-X
doi: 10.1016/S1474-4422(17)30159-X
de Wilde A, van Maurik IS, Kunneman M et al (2017) Alzheimer’s biomarkers in daily practice (ABIDE) project: rationale and design. Alzheimers Dement Diagnosis, Assess Dis Monit 6:143–151. https://doi.org/10.1016/j.dadm.2017.01.003
van der Flier WM, Pijnenburg YAL, Prins N et al (2014) Optimizing patient care and research: the Amsterdam Dementia Cohort. J Alzheimers Dis 41:313–327. https://doi.org/10.3233/JAD-132306
doi: 10.3233/JAD-132306
Scheltens P, Leys D, Barkhof F et al (1992) Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 55:967–972. https://doi.org/10.1136/jnnp.55.10.967
doi: 10.1136/jnnp.55.10.967
Pasquier F, Leys D, Weerts JG et al (1996) Inter- and intraobserver reproducibility of cerebral atrophy assessment on MRI scans with hemispheric infarcts. Eur Neurol 36:268–272. https://doi.org/10.1159/000117270
doi: 10.1159/000117270
Smith SM, Zhang Y, Jenkinson M et al (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17:479–489. https://doi.org/10.1006/NIMG.2002.1040
doi: 10.1006/NIMG.2002.1040
Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56:907–922. https://doi.org/10.1016/j.neuroimage.2011.02.046
doi: 10.1016/j.neuroimage.2011.02.046
Dale AM, Fischl B, Sereno MI (1991) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9:179–194
DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845
doi: 10.2307/2531595
Liu H, Li G, Cumberland WG, Wu T (2005) Testing statistical significance of the area under a receiving operating characteristics curve for repeated measures design with bootstrapping. J Data Sci 3:257–278. https://doi.org/10.6339/JDS.2005.03(3).206
Visser P, Verhey F, Hofman P et al (2002) Medial temporal lobe atrophy predicts Alzheimer’s disease in patients with minor cognitive impairment. J Neurol Neurosurg Psychiatry 72:491. https://doi.org/10.1136/JNNP.72.4.491
doi: 10.1136/JNNP.72.4.491
Goodkin O, Pemberton H, Vos SB et al (2019) The quantitative neuroradiology initiative framework: application to dementia. Br J Radiol 92:20190365. https://doi.org/10.1259/bjr.20190365
doi: 10.1259/bjr.20190365
Koikkalainen JR, Rhodius-Meester HFM, Frederiksen KS et al (2019) Automatically computed rating scales from MRI for patients with cognitive disorders. Eur Radiol 29:4937–4947. https://doi.org/10.1007/s00330-019-06067-1
doi: 10.1007/s00330-019-06067-1
Lötjönen J, Wolz R, Koikkalainen J et al (2011) Fast and robust extraction of hippocampus from MR images for diagnostics of Alzheimer’s disease. Neuroimage 56:185–196. https://doi.org/10.1016/j.neuroimage.2011.01.062
doi: 10.1016/j.neuroimage.2011.01.062
Cash DM, Frost C, Iheme LO et al (2015) Assessing atrophy measurement techniques in dementia: results from the MIRIAD atrophy challenge. Neuroimage 123:149–164. https://doi.org/10.1016/j.neuroimage.2015.07.087
doi: 10.1016/j.neuroimage.2015.07.087

Auteurs

Silvia Ingala (S)

Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, Location VUmc, PO Box 7057, 1007 MB, Amsterdam, The Netherlands. s.ingala@amsterdamumc.nl.
Department of Radiology and Nuclear Medicine, Noordwest Hospital Group, Alkmaar, The Netherlands. s.ingala@amsterdamumc.nl.

Ingrid S van Maurik (IS)

Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.
Department of Epidemiology and Data Science, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.

Daniele Altomare (D)

Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.
Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.
Memory Clinic, University Hospitals of Geneva, Geneva, Switzerland.

Raphael Wurm (R)

Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, Location VUmc, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
Department of Neurology, Medical University of Vienna, Vienna, Austria.

Ellen Dicks (E)

Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.

Ronald A van Schijndel (RA)

Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, Location VUmc, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.

Marissa Zwan (M)

Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.

Femke Bouwman (F)

Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.

Niki Schoonenboom (N)

Geriatric Department, Noordwest Ziekenhuis Groep, Alkmaar, The Netherlands.

Leo Boelaarts (L)

Geriatric Department, Noordwest Ziekenhuis Groep, Alkmaar, The Netherlands.

Gerwin Roks (G)

Department of Neurology, Elisabeth-TweeSteden Ziekenhuis, Tilburg, The Netherlands.

Rob van Marum (R)

Department of Geriatrics, Jeroen Bosch Hospital, 'S-Hertogenbosch, The Netherlands.
Department of Family Medicine and Elderly Care Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.

Barbera van Harten (B)

Department of Neurology, Medisch Centrum Leeuwarden, Leeuwarden, The Netherlands.

Inge van Uden (I)

Department of Neurology, Catharina Hospital, Eindhoven, The Netherlands.

Jules Claus (J)

Department of Neurology, Tergooi Hospital, Blaricum, The Netherlands.

Viktor Wottschel (V)

Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, Location VUmc, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.

Hugo Vrenken (H)

Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, Location VUmc, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.

Mike P Wattjes (MP)

Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, Location VUmc, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany.

Wiesje M van der Flier (WM)

Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.
Department of Epidemiology and Data Science, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.

Frederik Barkhof (F)

Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, Location VUmc, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
Institutes of Neurology and Healthcare Engineering, UCL, London, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH