The rise and fall of countries in the global value chains.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
31 05 2022
Historique:
received: 19 02 2022
accepted: 19 04 2022
entrez: 31 5 2022
pubmed: 1 6 2022
medline: 3 6 2022
Statut: epublish

Résumé

Countries become global leaders by controlling international and domestic transactions connecting geographically dispersed production stages. We model global trade as a multi-layer network and study its power structure by investigating the tendency of eigenvector centrality to concentrate on a small fraction of countries, a phenomenon called localization transition. We show that the market underwent a significant drop in power concentration precisely in 2007 just before the global financial crisis. That year marked an inflection point at which new winners and losers emerged and a remarkable reversal of leading role took place between the two major economies, the US and China. We uncover the hierarchical structure of global trade and the contribution of individual industries to variations in countries' economic dominance. We also examine the crucial role that domestic trade played in leading China to overtake the US as the world's dominant trading nation. There is an important lesson that countries can draw on how to turn early signals of upcoming downturns into opportunities for growth. Our study shows that, despite the hardships they inflict, shocks to the economy can also be seen as strategic windows countries can seize to become leading nations and leapfrog other economies in a changing geopolitical landscape.

Identifiants

pubmed: 35641532
doi: 10.1038/s41598-022-12067-x
pii: 10.1038/s41598-022-12067-x
pmc: PMC9154043
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

9086

Informations de copyright

© 2022. The Author(s).

Références

Grossman, G. M. & Helpman, E. Product development and international trade. J. Polit. Econ. 97, 1261–1283 (1989).
doi: 10.1086/261653
Kindleberger, C. P. Dominance and leadership in the international economy: Exploitation, public goods, and free rides. Int. Stud. Quart. 25, 242–254 (1981).
doi: 10.2307/2600355
Carvalho, V. M. & Tahbaz-Salehi, A. Production networks: A primer. Annu. Rev. Econ. 11, 635–663. https://doi.org/10.1146/annurev-economics-080218-030212 (2019).
doi: 10.1146/annurev-economics-080218-030212
Cingolani, I., Panzarasa, P. & Tajoli, L. Countries’ positions in the international global value networks: Centrality and economic performance. Appl. Netw. Sci. 2, 21 (2017).
pubmed: 30443576 pmcid: 6214273 doi: 10.1007/s41109-017-0041-4
Cristelli, M., Tacchella, A. & Pietronero, L. The heterogeneous dynamics of economic complexity. PLoS One 10, e0117174 (2015).
pubmed: 25671312 pmcid: 4325004 doi: 10.1371/journal.pone.0117174
Fagiolo, G., Reyes, J. & Schiavo, S. World-trade web: Topological properties, dynamics, and evolution. Phys. Rev. E 79, 036115 (2009).
doi: 10.1103/PhysRevE.79.036115
Formichini, M., Cimini, G., Pugliese, E. & Gabrielli, A. Influence of technological innovations on industrial production: A motif analysis on the multilayer network. Entropy 21, 126 (2019).
pmcid: 7514614 doi: 10.3390/e21020126
Garlaschelli, D. & Loffredo, M. I. Fitness-dependent topological properties of the world trade web. Phys. Rev. Lett. 93, 188701 (2004).
pubmed: 15525215 doi: 10.1103/PhysRevLett.93.188701
Demirel, G. Network science for supply chain analysis. Theory, methods, and empirical results. In The Digital Supply Chain (eds MacCarthy, B. & Ivanov, D.) (Elsevier, 2022).
He, J. & Deem, M. W. Structure and response in the world trade network. Phys. Rev. Lett. 105, 198701 (2010).
pubmed: 21231202 doi: 10.1103/PhysRevLett.105.198701
Hidalgo, C. A. & Hausmann, R. The building blocks of economic complexity. Proc. Natl. Acad. Sci. 106, 10570–10575 (2009).
pubmed: 19549871 pmcid: 2705545 doi: 10.1073/pnas.0900943106
Schweitzer, F. et al. Economic networks: The new challenges. Science 325, 422–425 (2009).
pubmed: 19628858 doi: 10.1126/science.1173644
Serrano, M. A. & Boguná, M. Topology of the world trade web. Phys. Rev. E 68, 015101 (2003).
doi: 10.1103/PhysRevE.68.015101
Barigozzi, M., Fagiolo, G. & Mangioni, G. Identifying the community structure of the international-trade multi-network. Phys. A 390, 2051–2066 (2011).
doi: 10.1016/j.physa.2011.02.004
Piccardi, C. & Tajoli, L. Existence and significance of communities in the world trade web. Phys. Rev. E 85, 066119 (2012).
doi: 10.1103/PhysRevE.85.066119
Newman, M. Networks (Oxford University Press, 2018).
doi: 10.1093/oso/9780198805090.001.0001
Saracco, F., Di Clemente, R., Gabrielli, A. & Squartini, T. Randomizing bipartite networks: The case of the world trade web. Sci. Rep. 5, 25 (2015).
doi: 10.1038/srep10595
Cristelli, M., Gabrielli, A., Tacchella, A., Caldarelli, G. & Pietronero, L. Measuring the intangibles: A metrics for the economic complexity of countries and products. PLoS One 8, e70726 (2013).
pubmed: 23940633 pmcid: 3733723 doi: 10.1371/journal.pone.0070726
Amaral, L. A. N. & Ottino, J. M. Complex networks. Eur. Phys. J. B 38, 147–162 (2004).
doi: 10.1140/epjb/e2004-00110-5
Battiston, F., Nicosia, V. & Latora, V. Structural measures for multiplex networks. Phys. Rev. E 89, 032804 (2014).
doi: 10.1103/PhysRevE.89.032804
Aleta, A. & Moreno, Y. Multilayer networks in a nutshell. Annu. Rev. Condensed Matter Phys. 10, 45–62 (2019).
doi: 10.1146/annurev-conmatphys-031218-013259
Bianconi, G. Multilayer Networks: Structure and Function (Oxford University Press, 2018).
doi: 10.1093/oso/9780198753919.001.0001
Boccaletti, S. et al. The structure and dynamics of multilayer networks. Phys. Rep. 544, 1–122 (2014).
pubmed: 32834429 pmcid: 7332224 doi: 10.1016/j.physrep.2014.07.001
Alves, L. G. A., Mangioni, G., Rodrigues, F., Panzarasa, P. & Moreno, Y. Unfolding the complexity of the global value chain: Strength and entropy in the single-layer, multiplex, and multi-layer international trade networks. Entropy 20, 909 (2018).
doi: 10.3390/e20120909
Alves, L. G. A. et al. The nested structural organization of the worldwide trade multi-layer network. Sci. Rep. 9, 2866 (2019).
pubmed: 30814565 pmcid: 6393514 doi: 10.1038/s41598-019-39340-w
Mastrandrea, R., Squartini, T., Fagiolo, G. & Garlaschelli, D. Reconstructing the world trade multiplex: The role of intensive and extensive biases. Phys. Rev. E 90, 1–18 (2014).
doi: 10.1103/PhysRevE.90.062804
Lee, K.-M. & Goh, K.-I. Strength of weak layers in cascading failures on multiplex networks: Case of the international trade network. Sci. Rep. 6, 26346 (2016).
pubmed: 27211291 pmcid: 4876470 doi: 10.1038/srep26346
Ghariblou, S., Salehi, M., Magnani, M. & Jalili, M. Shortest paths in multiplex networks. Sci. Rep. 7, 2142 (2017).
pubmed: 28526822 pmcid: 5438413 doi: 10.1038/s41598-017-01655-x
Lejour, A., Rojas-Romagosa, H. & Veenendaal, P. Identifying hubs and spokes in global supply chains using redirected trade in value added (2014). Working Paper Series 1670.
Antràs, P., Chor, D., Fally, T. & Hillberry, R. Measuring upstreamness of production in trade flows. Am. Econ. Rev. Pap. Proc. 102, 412–416 (2012).
doi: 10.1257/aer.102.3.412
Antràs, P. & D, C. Organizing the global value chain. Econometrica 81, 2127–2204 (2013).
doi: 10.3982/ECTA10813
Costinot, A., Vogel, J. & Wang, S. An elementary theory of global supply chains. Rev. Econ. Stud. 80, 109–144 (2013).
doi: 10.1093/restud/rds023
Johnson, R. & G, N. Accounting for intermediates: Production sharing and trade in value added. J. Int. Econ. 86, 224–236 (2012).
doi: 10.1016/j.jinteco.2011.10.003
Timmer, M. P., Dietzenbacher, E., Los, B., Stehrer, R. & De Vries, G. J. An illustrated user guide to the world input-output database: The case of global automotive production. Rev. Int. Econ. 23, 575–605 (2015).
doi: 10.1111/roie.12178
Bonacich, P. Power and centrality: A family of measures. Am. J. Sociol. 92, 1170–1182 (1987).
doi: 10.1086/228631
Newman, M. E. Mathematics of networks. In The New Palgrave Dictionary of Economics 1 (Springer, 2016).
Solá, L. et al. Eigenvector centrality of nodes in multiplex networks. Chaos Interdiscip. J. Nonlinear Sci. 23, 033131 (2013).
doi: 10.1063/1.4818544
De Domenico, M., Solé-Ribalta, A., Omodei, E., Gómez, S. & Arenas, A. Ranking in interconnected multilayer networks reveals versatile nodes. Nat. Commun. 6, 6868 (2015).
pubmed: 25904405 doi: 10.1038/ncomms7868
de Arruda, G. F., Cozzo, E., Peixoto, T. P., Rodrigues, F. A. & Moreno, Y. Disease localization in multilayer networks. Phys. Rev. X 7, 011014 (2017).
pmcid: 7219475
Goltsev, A. V., Dorogovtsev, S. N., Oliveira, J. G. & Mendes, J. F. Localization and spreading of diseases in complex networks. Phys. Rev. Lett. 109, 128702 (2012).
pubmed: 23006000 doi: 10.1103/PhysRevLett.109.128702
De Domenico, M. et al. Mathematical formulation of multilayer networks. Phys. Rev. X 3, 041022 (2013).
Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, 2013).
Ward, J. H. Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244. https://doi.org/10.1080/01621459.1963.10500845 (1963).
doi: 10.1080/01621459.1963.10500845
Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65. https://doi.org/10.1016/0377-0427(87)90125-7 (1987).
doi: 10.1016/0377-0427(87)90125-7
Sigaki, H. Y. D., Perc, M. & Ribeiro, H. V. Clustering patterns in efficiency and the coming-of-age of the cryptocurrency market. Sci. Rep. 9, 1–9. https://doi.org/10.2307/2325486 (2019).
doi: 10.2307/2325486
Fortunato, S. Community detection in graphs. Phys. Rep. 486, 75–174 (2010).
doi: 10.1016/j.physrep.2009.11.002
Martin, T., Zhang, X. & Newman, M. E. Localization and centrality in networks. Phys. Rev. E 90, 052808 (2014).
doi: 10.1103/PhysRevE.90.052808
Stephen, M. D. & Parízek, M. New powers and the distribution of preferences in global trade governance: From deadlock and drift to fragmentation. New Polit. Econ. 24, 735–758. https://doi.org/10.1080/13563467.2018.1509065 (2019).
doi: 10.1080/13563467.2018.1509065
Déez, F. J., Leigh, D. & Tambunlertchai, S. Global market power and its macroeconomic implications (2018). IMF Working Paper.
Squartini, T., Van Lelyveld, I. & Garlaschelli, D. Early-warning signals of topological collapse in interbank networks. Sci. Rep. 3, 3357 (2013).
pubmed: 24285089 pmcid: 3842548 doi: 10.1038/srep03357
Cohen, M. A. & Lee, H. L. Designing the right global supply chain network. Manuf. Serv. Oper. Manage. 22, 15–24. https://doi.org/10.1287/msom.2019.0839 (2020).
doi: 10.1287/msom.2019.0839
Lee, Hl. & Tang, C. S. Socially and environmentally responsible value chain innovations: New operations management research opportunities. Manage. Sci. 92, 983–1476. https://doi.org/10.1287/mnsc.2016.2682 (2017).
doi: 10.1287/mnsc.2016.2682
Osadchiy, N., Gaur, V. & Seshadri, S. Systematic risk in supply chain networks. Manage. Sci. 62, 1755–1777. https://doi.org/10.1287/mnsc.2015.2187 (2015).
doi: 10.1287/mnsc.2015.2187
Lang, T. & McKee, M. The reinvasion of Ukraine threatens global food supplies. BMJ 376, 25 (2022).
Shih, W. C. Are the risks of global supply chains starting to outweigh the rewards?. Harvard Bus. Rev. 320, 20 (2022).
Aller, C., Ductor, L. & Herrerias, M. J. The world trade network and the environment. Energy Econ. 52, 55–68 (2015).
doi: 10.1016/j.eneco.2015.09.008
How are trade and environmental sustainability compatible? https://www.oecd.org/trade/topics/trade-and-the-environment/ . Accessed 23 Mar 2022.
Wu, X., Zhang, C. & Du, W. An analysis on the crisis of “chips shortage” in automobile industry—-based on the double influence of COVID-19 and trade friction. In Journal of Physics: Conference Series, vol. 1971, 012100 (IOP Publishing, 2021).
Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 20, 261–272 (2020).
doi: 10.1038/s41592-019-0686-2
Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830. https://doi.org/10.5555/1953048.2078195 (2011).
doi: 10.5555/1953048.2078195

Auteurs

Luiz G A Alves (LGA)

Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.

Giuseppe Mangioni (G)

Department of Electrical, Electronic and Computer Engineering, University of Catania, 95125, Catania, Italy.

Francisco A Rodrigues (FA)

Institute of Mathematics and Computer Science, University of São Paulo, São Carlos, SP, 13566-590, Brazil.

Pietro Panzarasa (P)

School of Business and Management, Queen Mary University of London, London, E1 4NS, UK. p.panzarasa@qmul.ac.uk.

Yamir Moreno (Y)

Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50009, Zaragoza, Spain.
Department of Theoretical Physics, University of Zaragoza, 50009, Zaragoza, Spain.
ISI Foundation, 10126, Turin, Italy.

Articles similaires

Humans Neoplasms Male Female Middle Aged
Humans Male Female Aged Middle Aged
Humans Retrospective Studies Male Critical Illness Female

Classifications MeSH