The arbuscular mycorrhizal fungus Rhizophagus clarus improves physiological tolerance to drought stress in soybean plants.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
31 05 2022
31 05 2022
Historique:
received:
21
12
2021
accepted:
12
05
2022
entrez:
31
5
2022
pubmed:
1
6
2022
medline:
3
6
2022
Statut:
epublish
Résumé
Soybean (Glycine max L.) is an economically important crop, and is cultivated worldwide, although increasingly long periods of drought have reduced the productivity of this plant. Research has shown that inoculation with arbuscular mycorrhizal fungi (AMF) provides a potential alternative strategy for the mitigation of drought stress. In the present study, we measured the physiological and morphological performance of two soybean cultivars in symbiosis with Rhizophagus clarus that were subjected to drought stress (DS). The soybean cultivars Anta82 and Desafio were grown in pots inoculated with R. clarus. Drought stress was imposed at the V3 development stage and maintained for 7 days. A control group, with well-irrigated plants and no AMF, was established simultaneously in the greenhouse. The mycorrhizal colonization rate, and the physiological, morphological, and nutritional traits of the plants were recorded at days 3 and 7 after drought stress conditions were implemented. The Anta82 cultivar presented the highest percentage of AMF colonization, and N and K in the leaves, whereas the DS group of the Desafio cultivar had the highest water potential and water use efficiency, and the DS + AMF group had thermal dissipation that permitted higher values of F
Identifiants
pubmed: 35641544
doi: 10.1038/s41598-022-13059-7
pii: 10.1038/s41598-022-13059-7
pmc: PMC9156723
doi:
Substances chimiques
Water
059QF0KO0R
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
9044Informations de copyright
© 2022. The Author(s).
Références
Grassini, P. et al. Soybean, Chapter 8. In Crop Physiology Case Histories for Major Crops (eds Sadras, V. O. & Calderini, D. F.) 282–319 (Elsevier Inc., 2021).
doi: 10.1016/B978-0-12-819194-1.00008-6
Bragagnolo, F. S., Funari, C. S., Ibáñez, E. & Cifuentes, A. Metabolomics as a tool to study underused soy parts: In search of bioactive compounds. Foods 10, 1308 (2021).
pubmed: 34200265
pmcid: 8230045
doi: 10.3390/foods10061308
Bittencourt, G. et al. Soybean hulls as carbohydrate feedstock for medium to high-value biomolecule production in biorefineries: A review. Bioresour. Technol. 339, 125594 (2021).
doi: 10.1016/j.biortech.2021.125594
Habibzadeh, Y. Arbuscular mycorrhizal fungi in alleviation of drought stress on grain yield and yield components of mungbean (Vigna radiata L.) plants. Int. J. Sci. 4, 34–40 (2015).
Cera, J. C. et al. Soybean yield in future climate scenarios for the state of Rio Grande do Sul, Brazil. Pesqui. Agropecu. Bras. 52, 380–392 (2017).
doi: 10.1590/s0100-204x2017000600002
Rising, J. & Devineni, N. Crop switching reduces agricultural losses from climate change in the United States by half under RCP 8.5. Nat. Commun. 11, 1–7 (2020).
doi: 10.1038/s41467-020-18725-w
Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA. 114, 9326–9331 (2017).
pubmed: 28811375
pmcid: 5584412
doi: 10.1073/pnas.1701762114
IPCC-Intergovernmental Panel on Climate Change. Climate Change 2013: The PHYSICAL Science Basis. Contribution of Working Group I to the Fifth Assessment Report (Cambridge University Press, 2013).
Batista, P. F. et al. Biochemical and physiological impacts of zinc sulphate, potassium phosphite and hydrogen sulphide in mitigating stress conditions in soybean. Physiol. Plant. 168, 456–472 (2020).
pubmed: 31600428
Bharath, P., Gahir, S. & Raghavendra, A. S. Abscisic acid-induced stomatal closure: An important component of plant defense against abiotic and biotic stress. Front. Plant Sci. 12, 615114 (2021).
pubmed: 33746999
pmcid: 7969522
doi: 10.3389/fpls.2021.615114
Müller, C., Hodecker, B. E. R., Barros, N. F. & Merchant, A. A physiological approach for pre-selection of eucalyptus clones resistant to drought. IForest 13, 16–23 (2020).
doi: 10.3832/ifor3185-012
Fang, Y. et al. Moderate drought stress affected root growth and grain yield in old, modern and newly released cultivars of winter wheat. Front. Plant Sci. 8, 1–14 (2017).
doi: 10.3389/fpls.2017.00672
Oliveira, T. C. et al. Production of soybean in association with the arbuscular mycorrhizal fungi Rhizophagus clarus cultivated in field conditions. Rev. Ciencias Agroveterinarias 18, 530–535 (2019).
doi: 10.5965/223811711832019530
Hu, Y., Xie, W. & Chen, B. Arbuscular mycorrhiza improved drought tolerance of maize seedlings by altering photosystem II efficiency and the levels of key metabolites. Chem. Biol. Technol. Agric. 7, 1–14 (2020).
doi: 10.1186/s40538-020-00186-4
Cheng, H. Q., Zou, Y. N., Wu, Q. S. & Kuča, K. Arbuscular mycorrhizal fungi alleviate drought stress in trifoliate orange by regulating H+-ATPase activity and gene expression. Front. Plant Sci. 12, 659694 (2021).
pubmed: 33841484
pmcid: 8027329
doi: 10.3389/fpls.2021.659694
Latef, A. A. H. A. et al. Arbuscular mycorrhizal symbiosis and abiotic stress in plants: A review. J. Plant Biol. 59, 407–426 (2016).
doi: 10.1007/s12374-016-0237-7
Yang, Y., He, C., Huang, L., Ban, Y. & Tang, M. The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area. PLoS ONE 12, e0182264 (2017).
pubmed: 28771531
pmcid: 5542611
doi: 10.1371/journal.pone.0182264
Wang, W. X. et al. Nutrient exchange and regulation in Arbuscular mycorrhizal symbiosis. Mol. Plant. 10, 1147–1158 (2017).
pubmed: 28782719
doi: 10.1016/j.molp.2017.07.012
Matos, P. F. et al. Beneficial services of glomalin and arbuscular mycorrhizal fungi in degraded soils in Brazil. Sci. Agric. 79, e20210064 (2022).
doi: 10.1590/1678-992x-2021-0064
Liu, C. Y. et al. Mycorrhiza stimulates root-hair growth and IAA synthesis and transport in trifoliate orange under drought stress. Sci Rep. 8, 1978 (2018).
pubmed: 29386587
pmcid: 5792640
doi: 10.1038/s41598-018-20456-4
Tsoata, E., Njock, S. R., Youmbi, E. & Nwaga, D. Early effects of water stress on some biochemical and mineral parameters of mycorrhizal Vigna subterranea (L.) Verdc. (Fabaceae) cultivated in Cameroon. Int. J. Agron. Agric. Res. 7, 21–35 (2015).
Wang, W. Glomalin contributed more to carbon, nutrients in deeper soils, and differently associated with climates and soil properties in vertical profiles. Sci. Rep. 7, 13003 (2017).
pubmed: 29021579
pmcid: 5636888
doi: 10.1038/s41598-017-12731-7
Ingraffia, R., Amato, G., Frenda, A. S. & Giambalvo, D. Impacts of arbuscular mycorrhizal fungi on nutrient uptake, N
doi: 10.1371/journal.pone.0213672
Kameoka, H., Maeda, T., Okuma, N. & Kawaguchi, M. Structure-specific regulation of nutrient transport and metabolism in arbuscular mycorrhizal fungi. Plant Cell Physiol. 60, 2272–2281 (2019).
pubmed: 31241164
doi: 10.1093/pcp/pcz122
Kohler, J., Roldán, A., Campoy, M. & Caravaca, F. Unraveling the role of hyphal networks from arbuscular mycorrhizal fungi in aggregate stabilization of semiarid soils with different textures and carbonate contents. Plant Soil 410, 273–281 (2017).
doi: 10.1007/s11104-016-3001-3
Bitterlich, M., Sandmann, M. & Graefe, J. Arbuscular mycorrhiza alleviates restrictions to substrate water flow and delays transpiration limitation to stronger drought in tomato. Front. Plant Sci. 9, 1–15 (2018).
doi: 10.3389/fpls.2018.00154
Badr, M. A., El-Tohamy, W. A., Abou-Hussein, S. D. & Gruda, N. S. Deficit irrigation and arbuscular mycorrhiza as a water-saving strategy for eggplant production. Horticulturae 6, 1–17 (2020).
doi: 10.3390/horticulturae6030045
Etemadi, M. et al. Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Physiol. 166, 281–292 (2014).
pubmed: 25096975
pmcid: 4149713
doi: 10.1104/pp.114.246595
Querejeta, J. I., Egerton-Warburton, L. M., Prieto, I., Vargas, R. & Allen, M. F. Changes in soil hyphal abundance and viability can alter the patterns of hydraulic redistribution by plant roots. Plant Soil. 355, 63–73 (2012).
doi: 10.1007/s11104-011-1080-8
Worrich, A. et al. Mycelium-mediated transfer of water and nutrients stimulates bacterial activity in dry and oligotrophic environments. Nat. Commun. 8, 15472 (2017).
pubmed: 28589950
pmcid: 5467244
doi: 10.1038/ncomms15472
Wu, Q. S. & Xia, R. X. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J. Plant Physiol. 163, 417–425 (2006).
pubmed: 16455355
doi: 10.1016/j.jplph.2005.04.024
Igiehon, O. N. & Babalola, O. O. Rhizobium and mycorrhizal fungal species improved soybean yield under drought stress conditions. Curr. Microbiol. 78, 1615–1627 (2021).
pubmed: 33686507
pmcid: 7997835
doi: 10.1007/s00284-021-02432-w
Huang, Y. M. et al. Mycorrhizal-induced calmodulin mediated changes in antioxidant enzymes and growth response of drought-stressed trifoliate orange. Front. Microbiol. 5, 682 (2014).
pubmed: 25538696
pmcid: 4257356
doi: 10.3389/fmicb.2014.00682
Begum, N. et al. Arbuscular mycorrhizal fungi improve growth, essential oil, secondary metabolism, and yield of tobacco (Nicotiana tabacum L.) under drought stress conditions. Environ. Sci. Pollut. Res. 28, 45276–45295 (2021).
doi: 10.1007/s11356-021-13755-3
Bahadur, A. et al. Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. Int. J. Mol. Sci. 20, 4199 (2019).
pmcid: 6747277
doi: 10.3390/ijms20174199
Johnson, N. C. & Gibson, K. S. Understanding multilevel selection may facilitate management of arbuscular mycorrhizae in sustainable agroecosystems. Front. Plant Sci. 11, 627345 (2021).
pubmed: 33574827
pmcid: 7870699
doi: 10.3389/fpls.2020.627345
Schaefer, D. A., Gui, H., Mortimer, P. E. & Xu, J. Arbuscular mycorrhiza and sustainable agriculture. Circ. Agric. Syst. 1, 1–7 (2021).
Schübler, A. & Walker, C. The Glomeromycota. A Species List with New Families and New Genera (The Royal Botanic Garden, Botanische Staatssammlung Munich, Oregon State University, 2010).
Omirou, M., Ioannides, I. M. & Ehaliotis, C. Mycorrhizal inoculation affects arbuscular mycorrhizal diversity in watermelon roots, but leads to improve colonization and plant response under water stress only. Appl. Soil Ecol. 63, 112–119 (2013).
doi: 10.1016/j.apsoil.2012.09.013
INVAM: International Culture Collection of (Vesicular) Arbuscular Mycorrhizal Fungi. http://fungi.invam.wvu.edu . (West Virginia University, 2022).
Sugiura, Y. et al. Myristate can be used as a carbon and energy source for the asymbiotic growth of arbuscular mycorrhizal fungi. PNAS 117, 25779–25788 (2020).
pubmed: 32999061
pmcid: 7568319
doi: 10.1073/pnas.2006948117
Tanaka, S. et al. Asymbiotic mass production of the arbuscular mycorrhizal fungus Rhizophagus clarus. Commun. Biol. 5, 43 (2022).
pubmed: 35022540
pmcid: 8755765
doi: 10.1038/s42003-021-02967-5
Lenoir, I., Fontaine, J. & Sahraoui, A.L.-H. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochemistry 123, 4–15 (2016).
pubmed: 26803396
doi: 10.1016/j.phytochem.2016.01.002
Delavaux, C. S. et al. Mycorrhizal types influence island biogeography of plants. Commun. Biol. 4, 1–8 (2021).
doi: 10.1038/s42003-021-02649-2
Ruiz-Lozano, J. M. & Aroca, R. Host response to osmotic stresses: stomatal behaviour and water use efficiency of arbuscular mycorrhizal plants. In Arbuscular Mycorrhizas: Physiology and Function (eds Koltai, H. & Kapulnik, Y.) 239–256 (Springer, 2010).
doi: 10.1007/978-90-481-9489-6_11
Vasar, M. et al. Arbuscular mycorrhizal fungal communities in the soils of desert habitats. Microorganims 9, 229 (2021).
doi: 10.3390/microorganisms9020229
Abdalla, M. & Ahmed, M. A. Arbuscular mycorrhiza symbiosis enhances water status and soil plant hydraulic conductance under drought. Front. Plant Sci. 12, 722954 (2021).
pubmed: 34721455
pmcid: 8551442
doi: 10.3389/fpls.2021.722954
Begum, N. et al. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Front. Plant Sci. 10, 1–15 (2019).
doi: 10.3389/fpls.2019.01068
Peña Venegas, R. A. et al. The phosphate inhibition paradigm: Host and fungal genotypes determine arbuscular mycorrhizal fungal colonization and responsiveness to inoculation in cassava with increasing phosphorus supply. Front. Plant Sci. 12, 693037 (2021).
pubmed: 34239529
pmcid: 8258410
doi: 10.3389/fpls.2021.693037
Silva Júnior, J. M. T., Mendes Filho, P. F., Gomes, V. F. F., Almeida, A. M. M. & Garcia, K. G. V. Morphological pattern of colonization by mycorrhizal fungi and the microbial activity observed in Barbados cherry crops. Ciência Rural 47, e20160660 (2017).
doi: 10.1590/0103-8478cr20160660
Moreira, S. D., França, A. C., Rocha, W. W., Tibães, E. S. R. & Neiva Júnior, E. Inoculation with mycorrhizal fungi on the growth and tolerance to water deficit of coffee plants. Rev. Bras. Eng. Agríc. Ambient. 22, 747–752 (2018).
doi: 10.1590/1807-1929/agriambi.v22n11p747-752
Al-Amri, S. M. Application of bio-fertilizers for enhancing growth and yield of common bean plants grown under water stress conditions. Saudi J. Biol. Sci. 28, 3901–3908 (2021).
pubmed: 34220246
pmcid: 8241702
doi: 10.1016/j.sjbs.2021.03.064
Ruiz Sánchez, M. et al. Categorization of the water status of rice inoculated with arbuscular mycorrhizae and with water deficit. Agron. Mesoam. 32, 339–355 (2021).
doi: 10.15517/am.v32i2.42066
Duc, N. H., Csintalan, Z. & Posta, K. Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Plant Physiol. Biochem. 132, 297–307 (2018).
pubmed: 30245343
doi: 10.1016/j.plaphy.2018.09.011
Tereucán, G. et al. Shifts in biochemical and physiological responses by the inoculation of arbuscular mycorrhizal fungi in Triticum aestivum growing under drought conditions. J. Sci. Food Agric. 102, 1927–1938 (2022).
pubmed: 34510460
doi: 10.1002/jsfa.11530
Huang, D. et al. Silencing MdGH3-2/12 in apple reduces drought resistance by regulating AM colonization. Hortic. Res. 8, 84 (2021).
pubmed: 33790267
pmcid: 8012562
doi: 10.1038/s41438-021-00524-z
Gilbert, M. E. & Medina, V. Drought adaptation mechanisms should guide experimental design. Trends Plant Sci. 21, 639–647 (2016).
pubmed: 27090148
doi: 10.1016/j.tplants.2016.03.003
Tombesi, S. et al. Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Sci. Rep. 5, 1–12 (2015).
doi: 10.1038/srep12449
Zou, Y. N. et al. Mycorrhizal trifoliate orange has greater root adaptation of morphology and phytohormones in response to drought stress. Sci. Rep. 7, 1–10 (2017).
Zhang, Z., Zhang, J., Xu, G., Zhou, L. & Li, Y. Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Zenia insignis seedlings under drought stress. New For. 50, 593–604 (2018).
doi: 10.1007/s11056-018-9681-1
Flexas, J. & Medrano, H. Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited. Ann. Bot. 89, 183–189 (2002).
pubmed: 12099349
pmcid: 4233792
doi: 10.1093/aob/mcf027
Lavergne, A. et al. Historical changes in the stomatal limitation of photosynthesis: Empirical support for an optimality principle. New Phytol. 225, 2484–2497 (2020).
pubmed: 31696932
doi: 10.1111/nph.16314
Sakoda, K., Yamori, W., Groszmann, M. & Evans, J. R. Stomatal, mesophyll conductance, and biochemical limitations to photosynthesis during induction. Plant Physiol. 185, 146–160 (2021).
pubmed: 33631811
doi: 10.1093/plphys/kiaa011
Quiroga, G., Erice, G., Aroca, R., Chaumont, F. & Ruiz-Lozano, J. M. Contribution of the arbuscular mycorrhizal symbiosis to the regulation of radial root water transport in maize plants under water deficit. Environ. Exp. Bot. 167, 103821 (2019).
doi: 10.1016/j.envexpbot.2019.103821
Cruz, R. S., Araújo, F. H. V., França, A. C., Sardinha, L. T. & Machado, C. M. M. Physiological responses of Coffea arabica cultivars in association with arbuscular mycorrhizal fungi. Coffee Sci. 15, e151641 (2020).
Ouledali, S., Ennajeh, M., Zrig, A., Gianinazzi, S. & Khemira, H. Estimating the contribution of arbuscular mycorrhizal fungi to drought tolerance of potted olive trees (Olea europaea). Acta Physiol. Plant. 40, 81 (2018).
doi: 10.1007/s11738-018-2656-1
Azcón-Aguilar, C. & Barea, J. M. Nutrient cycling in the mycorrhizosphere. J. Soil Sci. Plant Nutr. 15, 372–396 (2015).
Zhou, Q., Ravnskov, S., Jiang, D. & Wollenweber, B. Changes in carbon and nitrogen allocation, growth and grain yield induced by arbuscular mycorrhizal fungi in wheat (Triticum aestivum L.) subjected to a period of water déficit. Plant Growth Regul. 75, 751–760 (2015).
doi: 10.1007/s10725-014-9977-x
Alemu, S. T. Photosynthesis limiting stresses under climate change scenarios and role of chlorophyll fluorescence: A review article. Cogent Food Agric. 6, 1785136 (2020).
doi: 10.1080/23311932.2020.1785136
Dahal, K. & Vanlerberghe, G. C. Improved chloroplast energy balance during water deficit enhances plant growth: More crop per drop. J. Exp. Bot. 69, 1183–1197 (2018).
pubmed: 29281082
doi: 10.1093/jxb/erx474
Sade, N. et al. Delaying chloroplast turnover increases water-deficit stress tolerance through the enhancement of nitrogen assimilation in rice. J. Exp. Bot. 69, 867–878 (2018).
pubmed: 28992306
doi: 10.1093/jxb/erx247
Porcel, R. et al. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J. Plant Physiol. 185, 75–83 (2015).
pubmed: 26291919
doi: 10.1016/j.jplph.2015.07.006
Mo, Y. et al. Regulation of plant growth, photosynthesis, antioxidation and osmosis by an arbuscular mycorrhizal fungus in watermelon seedlings under well-watered and drought conditions. Front. Plant Sci. 7, 1–15 (2016).
doi: 10.3389/fpls.2016.00644
Mathur, S., Tomar, R. S. & Jajoo, A. Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress. Photosynth. Res. 139, 227–238 (2019).
pubmed: 29982909
doi: 10.1007/s11120-018-0538-4
García-Plazaola, J. I., Hernández, A., Artetxe, U. & Becerril, J. M. Regulation of the xanthophyll cycle pool size in duckweed (Lemna minor) plants. Physiol. Plant. 116, 121–126 (2002).
pubmed: 12207670
doi: 10.1034/j.1399-3054.2002.1160115.x
Strand, D. D. et al. Activation of cyclic electron flow by hydrogen peroxide in vivo. Proc. Natl. Acad. Sci. USA. 112, 5539–5544 (2015).
pubmed: 25870290
pmcid: 4418880
doi: 10.1073/pnas.1418223112
Carbonera, D., Gerotto, C., Posocco, B., Giacometti, G. M. & Morosinotto, T. NPQ activation reduces chlorophyll triplet state formation in the moss Physcomitrella patens. Biochim. Biophys. Acta Bioenergy 1817, 1608–1615 (2012).
doi: 10.1016/j.bbabio.2012.05.007
Demmig-Adams, B., Stewart, J. J., López-Pozo, M., Polutchko, S. K. & Adams, W. W. Zeaxanthin, a molecule for photoprotection in many different environments. Molecules 25, 5825 (2020).
pmcid: 7764489
doi: 10.3390/molecules25245825
Huseynova, I. M. et al. Drought-induced changes in photosynthetic apparatus and antioxidant components of wheat (Triticum durum Desf.) varieties. Photosynth. Res. 130, 215–223 (2016).
pubmed: 26988099
doi: 10.1007/s11120-016-0244-z
Sachdev, S., Ansari, S. A., Ansari, M. I. & Fujita, M. Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants 10, 277 (2021).
pubmed: 33670123
pmcid: 7916865
doi: 10.3390/antiox10020277
Baslam, M. & Goicoechea, N. Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 22, 347–359 (2012).
pubmed: 21894519
doi: 10.1007/s00572-011-0408-9
Moradtalab, N., Hajiboland, R., Aliasgharzad, N., Hartmann, T. E. & Neumann, G. Silicon and the association with an arbuscular-mycorrhizal fungus (Rhizophagus clarus) mitigate the adverse effects of drought stress on strawberry. Agronomy 9, 41 (2019).
doi: 10.3390/agronomy9010041
Sheteiwy, M. S. et al. Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC Plant Biol. 21, 195 (2021).
pubmed: 33888066
pmcid: 8061216
doi: 10.1186/s12870-021-02949-z
Comas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F. & Dierig, D. A. Root traits contributing to plant productivity under drought. Front. Plant Sci. 4, 1–16 (2013).
doi: 10.3389/fpls.2013.00442
Lozano, Y. M., Aguilar-Trigueros, C. A., Flaig, I. C. & Rillig, M. C. Root trait responses to drought are more heterogeneous than leaf trait responses. Funct. Ecol. 34, 2224–2235 (2020).
doi: 10.1111/1365-2435.13656
Jin, K. et al. Wheat root growth responses to horizontal stratification of fertiliser in a water-limited environment. Plant Soil 386, 77–88 (2015).
doi: 10.1007/s11104-014-2249-8
Boyer, L. R., Brain, P., Xu, X. M. & Jeffries, P. Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: Effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency. Mycorrhiza 25, 215–227 (2015).
pubmed: 25186649
doi: 10.1007/s00572-014-0603-6
Oliveira, R. S. et al. Increased protein content of chickpea (Cicer arietinum L.) inoculated with arbuscular mycorrhizal fungi and nitrogen fixing bacteria under water deficit conditions. J. Sci. Food Agric. 97, 4379–4385 (2017).
pubmed: 28071807
doi: 10.1002/jsfa.8201
Bernardo, L. et al. Proteomic insight into the mitigation of wheat root drought stress by arbuscular mycorrhizae. J. Proteomics 169, 21–32 (2017).
pubmed: 28366879
doi: 10.1016/j.jprot.2017.03.024
Sun, Z., Song, J., Xin, X., Xie, X. & Zhao, B. Arbuscular mycorrhizal fungal 14-3-3 proteins are involved in arbuscule formation and responses to abiotic stresses during AM symbiosis. Front. Microbiol. 9, 1–17 (2018).
doi: 10.3389/fmicb.2018.00091
Cely, M. V. et al. Inoculant of arbuscular mycorrhizal fungi (Rhizophagus clarus) increase yield of soybean and cotton under field conditions. Front. Microbiol. 7, 720 (2016).
pubmed: 27303367
pmcid: 4880672
doi: 10.3389/fmicb.2016.00720
Sousa, D. M. G. & Lobato, E. Correção do solo e adubação da cultura da soja. Planaltina: EMBRAPA-CPAC. Vol. 33, (1996).
Souza, F. A. Banco Ativo de Glomales da Embrapa Agrobiologia: catalogação e introdução de novos isolados desde 1995. Seropédica. Documentos, Embrapa Agrobiologia, Vol. 123, (2000).
Saggin-Junior, O. J., Borges, W. L., Novais, C. B. & Silva, E. M. R. Manual de curadores de germoplasma—micro-organismos: fungos micorrízicos arbusculares (Embrapa Recursos Genéticos e Biotecnologia, 2011).
Gerdemann, J. W. & Nicolson, T. H. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 46, 235–244 (1963).
doi: 10.1016/S0007-1536(63)80079-0
Jenkins, W. R. A rapid centrifugal—flotation technique for separating nematodes from soil. Plant Dis. Report. 48, 692 (1964).
Tiepo, A. N. et al. Enhanced drought tolerance in seedlings of Neotropical tree species inoculated with plant growth-promoting bacteria. Plant Physiol Biochem. 130, 277–288 (2018).
pubmed: 30036857
doi: 10.1016/j.plaphy.2018.07.021
Koskey, R. E. & Gemma, J. N. A modified procedure for staining roots to detect VA mycorrhizas. Mycol. Res. 92, 486–488 (1989).
doi: 10.1016/S0953-7562(89)80195-9
Phillips, J. M. & Hayman, D. S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55, 158-IN18 (1970).
doi: 10.1016/S0007-1536(70)80110-3
McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L. & Swan, J. A. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 115, 495–501 (1990).
pubmed: 33874272
doi: 10.1111/j.1469-8137.1990.tb00476.x
Wellburn, A. R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant. Physiol. 144, 307–313 (1994).
doi: 10.1016/S0176-1617(11)81192-2
Empresa Brasileira De Pesquisa Agropecuária – EMBRAPA. Manual de análises químicas de solos, plantas e fertilizantes 2nd edn. (Informação Tecnológica, 2009).
Le, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).
doi: 10.18637/jss.v025.i01
Kassambara, A. & Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. https://CRAN.R-project.org/package=factoextra (2020).
R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ . (R Foundation for Statistical Computing, 2021).
Cattell, R. The scree test for the number of factors. Multivariate Behav. Res. 1, 245–276 (1966).
pubmed: 26828106
doi: 10.1207/s15327906mbr0102_10