Higher dietary phytochemical index is associated with lower odds of knee osteoarthritis.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
31 05 2022
31 05 2022
Historique:
received:
19
12
2021
accepted:
19
05
2022
entrez:
31
5
2022
pubmed:
1
6
2022
medline:
3
6
2022
Statut:
epublish
Résumé
Previous studies have shown that adherence to dietary patterns rich in plant-based foods may reduce the odds of osteoarthritis; however, limited data are available on the association of consumption of diets rich in phytochemicals and odds of knee osteoarthritis (KOA). In this case-control study conducted in Iran, we aimed to investigate whether a higher dietary phytochemical index (DPI) is associated with decreased odds of having KOA. A total of 124 cases aged 20-60 years diagnosed with bilateral primary KOA according to the American College of Rheumatology criteria and 124 controls frequency-matched on age, sex, and body mass index (BMI) were included in the study. A validated food frequency questionnaire (FFQ) was used to collect information on dietary intakes. To calculate DPI scores, the dietary energy derived from foods rich in phytochemicals (kcal) was divided by the participant's total daily energy intake (kcal). Patients with KOA had lower intakes of dietary fiber (P = 0.004), vitamin A (P = 0.007), vitamin C (P = 0.001), and folate (P = 0.021) compared to controls. In the crude model, individuals in the third tertile of DPI had 65% lower odds of having KOA compared to those in the first tertile (OR 0.35, 95% CI 0.19 to 0.67, P-trend = 0.001). After adjustment for potential confounders, including age, sex, physical activity, smoking, and supplement use, this inverse association remained significant (OR 0.37, 95% CI 0.19 to 0.73, P-trend = 0.004). After further adjustment for BMI, this inverse association between DPI and odds of KOA also remained significant (OR 0.35, 95% CI 0.18 to 0.69, P-trend = 0.003). These findings suggest that adherence to a phytochemical-rich diet, as indicated by the increasing DPI score, is associated with lower odds of KOA.
Identifiants
pubmed: 35641816
doi: 10.1038/s41598-022-13019-1
pii: 10.1038/s41598-022-13019-1
pmc: PMC9156685
doi:
Substances chimiques
Phytochemicals
0
Vitamins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
9059Informations de copyright
© 2022. The Author(s).
Références
Allen, K. D. et al. Patient and provider interventions for managing osteoarthritis in primary care: Protocols for two randomized controlled trials. BMC Musculoskelet. Disord. 13, 1–11 (2012).
doi: 10.1186/1471-2474-13-60
Long, L., Soeken, K. & Ernst, E. Herbal medicines for the treatment of osteoarthritis: A systematic review. Rheumatology 40, 779–793 (2001).
pubmed: 11477283
doi: 10.1093/rheumatology/40.7.779
Yip, Y. et al. Impact of an Arthritis Self-Management Programme with an added exercise component for osteoarthritic knee sufferers on improving pain, functional outcomes, and use of health care services: An experimental study. Patient Educ. Couns. 65, 113–121 (2007).
pubmed: 17010554
doi: 10.1016/j.pec.2006.06.019
Ravaud, P. et al. Management of osteoarthritis (OA) with an unsupervised home based exercise programme and/or patient administered assessment tools. A cluster randomised controlled trial with a 2 × 2 factorial design. Ann. Rheum. Dis. 63, 703–708 (2004).
pubmed: 15140778
pmcid: 1755039
doi: 10.1136/ard.2003.009803
Turk, D. C. & Cohen, M. J. Sleep as a marker in the effective management of chronic osteoarthritis pain with opioid analgesics. Seminars in Arthritis and Rheumatism, 39, 477–490 (2010).
pubmed: 19136144
doi: 10.1016/j.semarthrit.2008.10.006
Deshpande, B. R. et al. Number of persons with symptomatic knee osteoarthritis in the US: Impact of race and ethnicity, age, sex, and obesity. Arthritis Care Res. 68, 1743–1750 (2016).
doi: 10.1002/acr.22897
Loew, L. et al. Ottawa panel evidence-based clinical practice guidelines for aerobic walking programs in the management of osteoarthritis. Arch. Phys. Med. Rehabil. 93, 1269–1285 (2012).
pubmed: 22421624
doi: 10.1016/j.apmr.2012.01.024
Haq, S. A. & Davatchi, F. Osteoarthritis of the knees in the COPCORD world. Int. J. Rheum. Dis. 14, 122–129 (2011).
pubmed: 21518310
doi: 10.1111/j.1756-185X.2011.01615.x
Conde, J. et al. Adipokines: Novel players in rheumatic diseases. Discov. Med. 15, 73–83 (2013).
pubmed: 23449109
Roos, H., Adalberth, T., Dahlberg, L. & Lohmander, L. S. Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: The influence of time and age. Osteoarthr. Cartil. 3, 261–267. https://doi.org/10.1016/s1063-4584(05)80017-2 (1995).
doi: 10.1016/s1063-4584(05)80017-2
Purcell, S. et al. Body composition, strength, and dietary intake of patients with hip or knee osteoarthritis. Can. J. Diet. Pract. Res. 77, 98–102 (2016).
pubmed: 26568150
doi: 10.3148/cjdpr-2015-037
Atukorala, I. et al. Is there a dose-response relationship between weight loss and symptom improvement in persons with knee osteoarthritis? Arthritis Care Res. 68, 1106–1114 (2016).
doi: 10.1002/acr.22805
Sanghi, D. et al. Elucidation of dietary risk factors in osteoarthritis knee—A case-control study. J. Am. Coll. Nutr. 34, 15–20 (2015).
pubmed: 25387081
doi: 10.1080/07315724.2013.875439
Leung, S. Y. et al. Short-term association among meteorological variation, outdoor air pollution and acute bronchiolitis in children in a subtropical setting. Thorax 76, 360–369 (2021).
pubmed: 33472969
doi: 10.1136/thoraxjnl-2020-215488
Zhang, Y. et al. Adherence to DASH dietary pattern is inversely associated with osteoarthritis in Americans. Int. J. Food Sci. Nutr. 71, 750–756 (2020).
pubmed: 32013635
doi: 10.1080/09637486.2020.1722075
Morales-Ivorra, I., Romera-Baures, M., Roman-Viñas, B. & Serra-Majem, L. Osteoarthritis and the Mediterranean diet: A systematic review. Nutrients 10, 1030 (2018).
pmcid: 6115848
doi: 10.3390/nu10081030
Liu, W.-R. et al. Gaultheria: Phytochemical and pharmacological characteristics. Molecules 18, 12071–12108 (2013).
pubmed: 24084015
pmcid: 6270042
doi: 10.3390/molecules181012071
Carnauba, R. A. et al. Association between high consumption of phytochemical-rich foods and anthropometric measures: A systematic review. Int. J. Food Sci. Nutr. 68, 158–166 (2017).
pubmed: 27608733
doi: 10.1080/09637486.2016.1229761
Green, J. A. et al. The potential for dietary factors to prevent or treat osteoarthritis. Proc. Nutr. Soc. 73, 278–288 (2014).
pubmed: 24572502
doi: 10.1017/S0029665113003935
Vincent, H. K., Bourguignon, C. M. & Taylor, A. G. Relationship of the dietary phytochemical index to weight gain, oxidative stress and inflammation in overweight young adults. J. Hum. Nutr. Diet. 23, 20–29 (2010).
pubmed: 19735350
doi: 10.1111/j.1365-277X.2009.00987.x
Eslami, O., Khoshgoo, M. & Shidfar, F. Dietary phytochemical index and overweight/obesity in children: A cross-sectional study. BMC. Res. Notes 13, 1–5 (2020).
doi: 10.1186/s13104-020-04979-6
Kim, M. & Park, K. Association between phytochemical index and metabolic syndrome. Nurs. Res. Pract. 14, 252–261 (2020).
Rigi, S. et al. Dietary phytochemical index in relation to risk of stroke: A case-control study. Nutr. Neurosci. https://doi.org/10.1080/1028415X.2021.1954291 (2021).
doi: 10.1080/1028415X.2021.1954291
pubmed: 34311680
Ghoreishy, S. M., Aminianfar, A., Benisi-Kohansal, S., Azadbakht, L. & Esmaillzadeh, A. Association between dietary phytochemical index and breast cancer: A case–control study. Breast Cancer 28, 1–9 (2021).
doi: 10.1007/s12282-021-01265-6
Altman, R. et al. Development of criteria for the classification and reporting of osteoarthritis: Classification of osteoarthritis of the knee. Arthritis Rheum. 29, 1039–1049 (1986).
pubmed: 3741515
doi: 10.1002/art.1780290816
Moghaddam, M. B. et al. The Iranian Version of International Physical Activity Questionnaire (IPAQ) in Iran: Content and construct validity, factor structure, internal consistency and stability. World Appl. Sci. J. 18, 1073–1080 (2012).
Ainsworth, B. E. et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 32, S498–S504 (2000).
pubmed: 10993420
doi: 10.1097/00005768-200009001-00009
Craig, C. L. et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 35, 1381–1395 (2003).
pubmed: 12900694
doi: 10.1249/01.MSS.0000078924.61453.FB
Pham, N. M. et al. Green tea and coffee consumption is inversely associated with depressive symptoms in a Japanese working population. Public Health Nutr. 17, 625–633 (2014).
pubmed: 23453038
doi: 10.1017/S1368980013000360
Esfahani, F. H., Asghari, G., Mirmiran, P. & Azizi, F. Reproducibility and relative validity of food group intake in a food frequency questionnaire developed for the Tehran Lipid and Glucose Study. J. Epidemiol. 20, 150–158 (2010).
pubmed: 20154450
doi: 10.2188/jea.JE20090083
Park, R. & Moon, J. Coffee and depression in Korea: The fifth Korean National Health and nutrition examination survey. Eur. J. Clin. Nutr. 69, 501–504 (2015).
pubmed: 25469468
doi: 10.1038/ejcn.2014.247
Zhijie, M. Y., Parker, L. & Dummer, T. J. Associations of coffee, diet drinks, and non-nutritive sweetener use with depression among populations in eastern Canada. Sci. Rep. 7, 1–10 (2017).
Lucas, M. et al. Coffee, caffeine, and risk of depression among women. Arch. Intern. Med. 171, 1571–1578 (2011).
pubmed: 21949167
pmcid: 3296361
doi: 10.1001/archinternmed.2011.393
McCarty, M. F. Proposal for a dietary “phytochemical index”. Med. Hypotheses 63, 813–817. https://doi.org/10.1016/j.mehy.2002.11.004 (2004).
doi: 10.1016/j.mehy.2002.11.004
pubmed: 15488652
Omori, G. et al. Association of mechanical factors with medial knee osteoarthritis: A cross-sectional study from Matsudai Knee Osteoarthritis Survey. J. Orthop. Sci. 21, 463–468 (2016).
pubmed: 27151074
doi: 10.1016/j.jos.2016.03.006
McCullough, M. L. et al. Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am. J. Clin. Nutr. 95, 454–464 (2012).
pubmed: 22218162
pmcid: 3260072
doi: 10.3945/ajcn.111.016634
Belobrajdic, D. P. & Bird, A. R. The potential role of phytochemicals in wholegrain cereals for the prevention of type-2 diabetes. Nutr. J. 12, 1–12 (2013).
doi: 10.1186/1475-2891-12-62
Mofrad, M. D., Siassi, F., Guilani, B., Bellissimo, N. & Azadbakht, L. Association of dietary phytochemical index and mental health in women: A cross-sectional study. Br. J. Nutr. 121, 1049–1056 (2019).
doi: 10.1017/S0007114519000229
Beking, K. & Vieira, A. Flavonoid intake and disability-adjusted life years due to Alzheimer’s and related dementias: A population-based study involving twenty-three developed countries. Public Health Nutr. 13, 1403–1409 (2010).
pubmed: 20059796
doi: 10.1017/S1368980009992990
Sung, M.-K. & Park, M.-Y. Nutritional modulators of ulcerative colitis: Clinical efficacies and mechanistic view. World J. Gastroenterol. 19, 994 (2013).
pubmed: 23467687
pmcid: 3582011
doi: 10.3748/wjg.v19.i7.994
Xu, C. et al. Role of dietary patterns and factors in determining the risk of knee osteoarthritis: A meta-analysis. Mod. Rheumatol. https://doi.org/10.1093/mr/roab059 (2021).
doi: 10.1093/mr/roab059
pubmed: 34971386
Veronese, N. et al. Adherence to a Mediterranean diet is associated with lower prevalence of osteoarthritis: Data from the osteoarthritis initiative. Clin. Nutr. 36, 1609–1614 (2017).
pubmed: 27769781
doi: 10.1016/j.clnu.2016.09.035
Valsamidou, E. et al. Dietary interventions with polyphenols in osteoarthritis: A systematic review directed from the preclinical data to randomized clinical studies. Nutrients 13, 1420 (2021).
pubmed: 33922527
pmcid: 8145539
doi: 10.3390/nu13051420
Maldonado, M. & Nam, J. The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. BioMed Res. Int. 2013, 1 (2013).
doi: 10.1155/2013/284873
Shen, C.-L. et al. Dietary polyphenols and mechanisms of osteoarthritis. J. Nutr. Biochem. 23, 1367–1377 (2012).
pubmed: 22832078
doi: 10.1016/j.jnutbio.2012.04.001
Glyn-Jones, S. et al. Osteoarthritis. The Lancet 386, 376–387 (2015).
doi: 10.1016/S0140-6736(14)60802-3
Ghoochani, N., Karandish, M., Mowla, K., Haghighizadeh, M. H. & Jalali, M. T. The effect of pomegranate juice on clinical signs, matrix metalloproteinases and antioxidant status in patients with knee osteoarthritis. J. Sci. Food Agric. 96, 4377–4381 (2016).
pubmed: 26804926
doi: 10.1002/jsfa.7647
Schell, J. et al. Strawberries improve pain and inflammation in obese adults with radiographic evidence of knee osteoarthritis. Nutrients 9, 949 (2017).
pmcid: 5622709
doi: 10.3390/nu9090949
Arjmandi, B. et al. Soy protein may alleviate osteoarthritis symptoms. Phytomedicine 11, 567–575 (2004).
pubmed: 15636169
doi: 10.1016/j.phymed.2003.11.001
Goldring, S. & Goldring, M. Clinical aspects, pathology and pathophysiology of osteoarthritis. J. Musculoskelet. Neuronal Interact. 6, 376 (2006).
pubmed: 17185832
Tanamas, S. K. et al. Sex hormones and structural changes in osteoarthritis: A systematic review. Maturitas 69, 141–156 (2011).
pubmed: 21481553
doi: 10.1016/j.maturitas.2011.03.019
Popa, D.-S. & Rusu, M. E. Isoflavones: Vegetable sources, biological activity, and analytical methods for their assessment. In Superfood and Functional Food the Development of Superfoods and Their Roles as Medicine (eds Shiomi, N. & Waisundara, V.) 133–153 (InTech Open, 2017).