Reactive Oxygen Species in the Reproductive System: Sources and Physiological Roles.


Journal

Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103

Informations de publication

Date de publication:
2022
Historique:
entrez: 31 5 2022
pubmed: 1 6 2022
medline: 3 6 2022
Statut: ppublish

Résumé

Reactive oxygen species (ROS) are oxygen-containing molecules which are reactive in nature and are capable of independent existence in the body. ROS comprise mostly of free radicals that contain at least one unpaired electron. Endogenous sources are the foremost birthplaces of ROS, which include mitochondrial electron transport chain, endoplasmic reticulum and peroxisome. Conversely, numerous enzymatic pathways such as xanthine oxidase and cyclooxygenase systems are among the prominent generators of cellular ROS. Major sources of ROS in the female reproductive tract include Graafian follicles, follicular fluid, fallopian tube, peritoneal cavity and endometrium. On the contrary, leukocytes, immature spermatozoa and varicocele are the key originators of ROS in the male reproductive system. For the sake of maintaining a proper oxidative balance, cells have evolved a variety of antioxidative molecules. From the physiological perspective, ROS and antioxidants are actively involved in the regulation of myriad female reproductive processes, such as cyclic luteal and endometrial changes, follicular development, ovulation, fertilization, embryonic implantation, maintenance of pregnancy and parturition. Similarly, physiological amounts of ROS are crucial in the accomplishment of various male reproductive functions as well, which include spermatozoa maturation, capacitation, hyperactivation and acrosome reaction. This chapter highlights the birthplaces of ROS in the female and male reproductive tract along with mechanisms of their production. This chapter will also put forward specific physiological roles of these reactive molecules in upholding the structural integrity and functionality of both the reproductive systems.

Identifiants

pubmed: 35641864
doi: 10.1007/978-3-030-89340-8_2
doi:

Substances chimiques

Antioxidants 0
Reactive Oxygen Species 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9-40

Informations de copyright

© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.

Références

Ray PD, Huang B-W, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signalling. Cell Signal. 2012;24:981–90. https://doi.org/10.1016/j.cellsig.2012.01.008 .
doi: 10.1016/j.cellsig.2012.01.008 pubmed: 22286106 pmcid: 3454471
Snezkina AV, Kudryavtseva AV, Kardymon OL, Savvateeva MV, Melnikova NV, Krasnov GS, Dmitriev AA. ROS generation and antioxidant defence systems in normal and malignant cells. Oxidative Med Cell Longev. 2019;2019:6175804. https://doi.org/10.1155/2019/6175804 .
doi: 10.1155/2019/6175804
Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005;3:28. https://doi.org/10.1186/1477-7827-3-28 .
doi: 10.1186/1477-7827-3-28 pubmed: 16018814 pmcid: 1215514
Al-Gubory KH, Fowler PA, Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol. 2010;42:1634–50. https://doi.org/10.1016/j.biocel.2010.06.001 .
doi: 10.1016/j.biocel.2010.06.001 pubmed: 20601089
Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47. https://doi.org/10.1038/35041687 .
doi: 10.1038/35041687 pubmed: 11089981
Schieber M, Chandel NS. ROS function in redox signalling and oxidative stress. Curr Biol. 2014;24:R453–62. https://doi.org/10.1016/j.cub.2014.03.034 .
doi: 10.1016/j.cub.2014.03.034 pubmed: 24845678 pmcid: 4055301
Ahmad G, Almasry M, Dhillon AS, Abuayyash MM, Kothandaraman N, Cakar Z. Overview and sources of reactive oxygen species (ROS) in the reproductive system. In: Agarwal A, Sharma RK, Gupta S, Harlev A, Ahmad G, du Plessis SS, Esteves SC, Wang SM, Durairajanayagam D, editors. Oxidative stress in human reproduction shedding light on a complicated phenomenon. Springer; 2017. p. 1–16. https://doi.org/10.1007/978-3-319-48427-3_1 .
doi: 10.1007/978-3-319-48427-3_1
Finkel T. Signal transduction by reactive oxygen species. J Cell Biol. 2011;194:7–15. https://doi.org/10.1083/jcb.201102095 .
doi: 10.1083/jcb.201102095 pubmed: 21746850 pmcid: 3135394
Roychoudhury S, Agarwal A, Virk G, Cho C-L. Potential role of green tea catechins in the management of oxidative stress-associated infertility. Reprod Biomed Online. 2017;34:487–98. https://doi.org/10.1016/j.rbmo.2017.02.006 .
doi: 10.1016/j.rbmo.2017.02.006 pubmed: 28285951
Wood ZA, Poole LB, Karplus PA. Peroxiredoxin evolution and the regulation of hydrogen peroxide signalling. Science. 2003;300:650–3. https://doi.org/10.1126/science.1080405 .
doi: 10.1126/science.1080405 pubmed: 12714747
du Plessis SS, Harlev A, Mohamed MI, Habib E, Kothandaraman N, Cakar Z. Physiological roles of reactive oxygen species (ROS) in the reproductive system. In: Agarwal A, Sharma RK, Gupta S, Harlev A, Ahmad G, du Plessis SS, Esteves SC, Wang SM, Durairajanayagam D, editors. Oxidative stress in human reproduction shedding light on a complicated phenomenon. Springer; 2017. p. 47–64. https://doi.org/10.1007/978-3-319-48427-3_3 .
doi: 10.1007/978-3-319-48427-3_3
Aitken RJ, Clarkson JS, Fishel S. Generation of reactive oxygen species, lipid peroxidation and human sperm function. Biol Reprod. 1989;41:183–97. https://doi.org/10.1095/biolreprod41.1.183 .
doi: 10.1095/biolreprod41.1.183 pubmed: 2553141
Martindale JL, Holbrook NJ. Cellular response to oxidative stress: signalling for suicide and survival. J Cell Physiol. 2002;192:1–15. https://doi.org/10.1002/jcp.10119 .
doi: 10.1002/jcp.10119 pubmed: 12115731
Li R, Jia Z, Trush MA. Defining ROS in biology and medicine. React Oxyg Species. 2016;1:9–21. https://doi.org/10.20455/ros.2016.803 .
doi: 10.20455/ros.2016.803
Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxidative Med Cell Longev. 2016;2016:1245049. https://doi.org/10.1155/2016/1245049 .
doi: 10.1155/2016/1245049
Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets and their implication in various diseases. Indian J Clin Biochem. 2015;30:11–26. https://doi.org/10.1007/s12291-014-0446-0 .
doi: 10.1007/s12291-014-0446-0 pubmed: 25646037
Nunes-Silva A, Freitas-Lima L. The association between physical exercise and reactive oxygen species (ROS) production. J Sports Med Doping Stud. 2014;4:2161-0673.1000152. https://doi.org/10.4172/2161-0673.1000152 .
doi: 10.4172/2161-0673.1000152
Buettner GR. Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide. Anti Cancer Agents Med Chem. 2011;11:341–6. https://doi.org/10.2174/187152011795677544 .
doi: 10.2174/187152011795677544
Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95. https://doi.org/10.1152/physrev.00018.2001 .
doi: 10.1152/physrev.00018.2001 pubmed: 11773609
Kehrer JP, Robertson JD, Smith CV. Free radicals and reactive oxygen species. In: McQueen CA, editor. Comprehensive toxicology, vol. 1. 2nd ed. London: Elsevier Inc; 2010. p. 277–307.
doi: 10.1016/B978-0-08-046884-6.00114-7
Fridovich I. Superoxide radical: an endogenous toxicant. Annu Rev Pharmacol Toxicol. 1983;23:239–57. https://doi.org/10.1146/annurev.pa.23.040183.001323 .
doi: 10.1146/annurev.pa.23.040183.001323 pubmed: 6307121
Fridovich I. The biology of oxygen radicals. Science. 1978;201:875–80. https://doi.org/10.1126/science.210504 .
doi: 10.1126/science.210504 pubmed: 210504
Tchobanoglous G, Burton FL, Stensel HD. Wasterwater engineering: treatment and reuse. 4th ed. New York: Mc Graw Hill; 2003.
Munter R. Advanced oxidation processes: current status and prospects. Proc Estonian Acad Sci Chem. 2001;50:59–80.
doi: 10.3176/chem.2001.2.01
Underbakke ES, Surmeli NB, Smith BC, Wynia-Smith SL, Marletta MA. Nitric oxide signalling. In: Reedijk J, Poeppelmeier K, editors. Comprehensive inorganic chemistry ІІ: from elements to applications. 2nd ed. London: Elsevier Inc; 2013. p. 241–62. https://doi.org/10.1016/B978-0-08-097774-4.00320-X .
doi: 10.1016/B978-0-08-097774-4.00320-X
Radi R. Oxygen radicals, nitric oxide and peroxynitrite: redox pathways in molecular medicine. Proc Natl Acad Sci U S A. 2018;115:5839–48. https://doi.org/10.1073/pnas.1804932115 .
doi: 10.1073/pnas.1804932115 pubmed: 29802228 pmcid: 6003358
Bruckdorfer R. The basics about nitric oxide. Mol Asp Med. 2005;26:3–31. https://doi.org/10.1016/j.mam.2004.09.002 .
doi: 10.1016/j.mam.2004.09.002
Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal. 2007;19:1807–19. https://doi.org/10.1016/j.cellsig.2007.04.009 .
doi: 10.1016/j.cellsig.2007.04.009 pubmed: 17570640
Wong H-S, Dighe PA, Mezera V, Monternier P-A, Brand MD. Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J Biol Chem. 2017;292:16804–9. https://doi.org/10.1074/jbc.R117.789271 .
doi: 10.1074/jbc.R117.789271 pubmed: 28842493 pmcid: 5641882
Giorgio M, Trinei M, Migliaccio E, Pelicci PG. Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol. 2007;8:722–8. https://doi.org/10.1038/nrm2240 .
doi: 10.1038/nrm2240 pubmed: 17700625
Dringen R, Pawlowski PG, Hirrlinger J. Peroxide detoxification by brain cells. J Neurosci Res. 2005;79:157–65. https://doi.org/10.1002/jnr.20280 .
doi: 10.1002/jnr.20280 pubmed: 15573410
Halliwell B, Clement MV, Long LH. Hydrogen peroxide in the human body. FEBS Lett. 2000;486:10–3. https://doi.org/10.1016/s0014-5793(00)02197-9 .
doi: 10.1016/s0014-5793(00)02197-9 pubmed: 11108833
Armogida M, Nistico R, Mercury NB. Therapeutic potential of targeting hydrogen peroxide metabolism in the treatment of brain ischemia. Br J Pharmacol. 2012;166:1211–24. https://doi.org/10.1111/j.1476-5381.2012.01912.x .
doi: 10.1111/j.1476-5381.2012.01912.x pubmed: 22352897 pmcid: 3417441
Aldred EM, Buck C, Vall K. Free radicals. In: Pharmacology: A handbook for Complementary Healthcare Professionals. London: Elsevier Inc; 2009. p. 1–3.
Hrycay EG, Bandiera SM. Involvement of cytochrome P450 in reactive oxygen species formation and cancer. Adv Pharmacol. 2015;74:35–84. https://doi.org/10.1016/bs.apha.2015.03.003 .
doi: 10.1016/bs.apha.2015.03.003 pubmed: 26233903
Manda G, Nechifor M, Neagu M. Reactive oxygen species, cancer and anti-cancer therapies. Curr Chem Biol. 2009;3:22–46.
doi: 10.2174/187231309787158271
Stief TW. The physiology and pharmacology of singlet oxygen. Med Hypotheses. 2003;60:567–72. https://doi.org/10.1016/s0306-9877(03)00026-4 .
doi: 10.1016/s0306-9877(03)00026-4 pubmed: 12615524 pmcid: 7157913
Schoonbroodt S, Legrand-Poels S, Best-Belpomme M, Piette J. Activation of the NF-kappaB transcription factor in a T-lymphocytic cell line by hypochlorous acid. Biochem J. 1997;321:777–85. https://doi.org/10.1042/bj3210777 .
doi: 10.1042/bj3210777 pubmed: 9032466 pmcid: 1218135
Wentworth P Jr, McDunn JE, Wentworth AD, Takeuchi C, Nieva J, Jones T, Bautista C, Ruedi JM, Gutierrez A, Janda KD, Babior BM, Eschenmoser A, Lerner RA. Evidence for antibody-catalyzed ozone formation in bacterial killing and inflammation. Science. 2002;298:2195–9. https://doi.org/10.1126/science.1077642 .
doi: 10.1126/science.1077642 pubmed: 12434011
Zhu X, Wentworth P Jr, Wentworth AD, Eschenmoser A, Lerner RA, Wilson IA. Probing the antibody-catalyzed water-oxidation pathway at atomic resolution. Proc Natl Acad Sci U S A. 2004;101:2247–52. https://doi.org/10.1073/pnas.0307311101 .
doi: 10.1073/pnas.0307311101 pubmed: 14982995 pmcid: 356936
Lerner RA, Eschenmoser A. Ozone in biology. Proc Natl Acad Sci U S A. 2003;100:3013–5. https://doi.org/10.1073/pnas.0730791100 .
doi: 10.1073/pnas.0730791100 pubmed: 12631693 pmcid: 152232
Bocci V. Ozone as a bioregulator: pharmacology and toxicology of ozonetherapy today. J Biol Regul Homeost Agents. 1996;10:31–53.
pubmed: 9250885
Agarwal A, Allamaneni SS. Role of free radicals in female reproductive diseases and assisted reproduction. Reprod Biomed Online. 2004;9:338–47. https://doi.org/10.1016/s1472-6483(10)62151-7 .
doi: 10.1016/s1472-6483(10)62151-7 pubmed: 15353087
Li W, Young JF, Sun J. NADPH oxidase-generated reactive oxygen species in mature follicles are essential for Drosophila ovulation. Proc Natl Acad Sci U S A. 2018;115:7765–70. https://doi.org/10.1073/pnas.1800115115 .
doi: 10.1073/pnas.1800115115 pubmed: 29987037 pmcid: 6065002
Kampfer C, Saller S, Windschuttl S, Berg D, Berg U, Mayerhofer A. Pigment-epithelium derived factor (PEDF) and the human ovary: a role in the generation of ROS in granulosa cells. Life Sci. 2014;97:129–36. https://doi.org/10.1016/j.lfs.2013.12.007 .
doi: 10.1016/j.lfs.2013.12.007 pubmed: 24361362
Fujii J, Iuchi Y, Okada F. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system. Reprod Biol Endocrinol. 2005;3:43. https://doi.org/10.1186/1477-7827-3-43 .
doi: 10.1186/1477-7827-3-43 pubmed: 16137335 pmcid: 1224869
Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol. 2012;10:49. https://doi.org/10.1186/1477-7827-10-49 .
doi: 10.1186/1477-7827-10-49 pubmed: 22748101 pmcid: 3527168
Ruder EH, Hartman TJ, Goldman MB. Impact of oxidative stress on female fertility. Curr Opin Obstet Gynecol. 2009;21:219. https://doi.org/10.1097/gco.0b013e32832924ba .
doi: 10.1097/gco.0b013e32832924ba pubmed: 19469044 pmcid: 2749720
Behrman HR, Kodaman PH, Preston SL, Gao S. Oxidative stress and the ovary. J Soc Gynecol Investig. 2001;8:S40–2. https://doi.org/10.1016/s1071-5576(00)00106-4 .
doi: 10.1016/s1071-5576(00)00106-4 pubmed: 11223371
Freitas C, Neto AC, Matos L, Silva E, Ribeiro A, Silva-Carvalho J, Almeida H. Follicular fluid redox involvement for ovarian follicle growth. J Ovarian Res. 2017;10:44.
doi: 10.1186/s13048-017-0342-3
Luddi A, Governini L, Capaldo A, Campanella G, De Leo V, Piomboni P, Morgante G. Characterization of the age-dependent changes in antioxidant defences and protein’s sulfhydryl/carbonyl stress in human follicular fluid. Antioxidants. 2020;9:927. https://doi.org/10.3390/antiox9100927 .
doi: 10.3390/antiox9100927 pmcid: 7599528
Nelson SM, Telfer EE, Anderson RA. The ageing ovary and uterus: new biological insights. Hum Reprod Update. 2013;19:67–83. https://doi.org/10.1093/humupd/dms043 .
doi: 10.1093/humupd/dms043 pubmed: 23103636
Roselli M, Dubey RK, Imthurn B, Macas E, Keller PJ. Effects of nitric oxide on human spermatozoa: evidence that nitric oxide decreases sperm motility and induces sperm toxicity. Hum Reprod. 1995;10:1786–90. https://doi.org/10.1093/oxfordjournals.humrep.a136174 .
doi: 10.1093/oxfordjournals.humrep.a136174
El Mouatassim S, Guerin P, Menezo Y. Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation. Mol Hum Reprod. 1999;5:720–5. https://doi.org/10.1093/molehr/5.8.720 .
doi: 10.1093/molehr/5.8.720 pubmed: 10421798
Ekerhovd E, Norstrom A. Involvement of a nitric oxide-cyclic guanosine monophosphate pathway in control of fallopian tube contractility. Gynecol Endocrinol. 2004;19:239–46. https://doi.org/10.1080/09513590400019296 .
doi: 10.1080/09513590400019296 pubmed: 15726911
Al-Azemi M, Refaat B, Amer S, Ola B, Chapman N, Ledger W. The expression of inducible nitric oxide synthase in the human fallopian tube during the menstrual cycle and in ectopic pregnancy. Fertil Steril. 2010;94:833–40. https://doi.org/10.1016/j.fertnstert.2009.04.020 .
doi: 10.1016/j.fertnstert.2009.04.020 pubmed: 19482272
Shao R, Zhang SX, Weijdegard B, Shein Z, Egecioglu E, Norstrom A, Brannstrom M, Billig H. Nitric oxide synthases and tubal ectopic pregnancies induced by Chlamydia infection: basic and clinical insights. Mol Hum Reprod. 2010;16:907–15.
doi: 10.1093/molehr/gaq063
Griffith OW, Stuehr DJ. Nitric oxide synthases: properties and catalytic mechanisms. Annu Rev Physiol. 1995;57:707–36. https://doi.org/10.1146/annurev.ph.57.030195.003423 .
doi: 10.1146/annurev.ph.57.030195.003423 pubmed: 7539994
Morris SM Jr, Billiar TR. New insights into the regulation of inducible nitric oxide synthesis. Am J Phys. 1994;266:E829–39. https://doi.org/10.1152/ajpendo.1994.266.6.E829 .
doi: 10.1152/ajpendo.1994.266.6.E829
Tranguch S, Huet-Hudson Y. Decreased viability of nitric oxide synthase double knockout mice. Mol Reprod Dev. 2003;65:175–9. https://doi.org/10.1002/mrd.10274 .
doi: 10.1002/mrd.10274 pubmed: 12704728
Zhan X, Li D, Johns RA. Expression of endothelial nitric oxide synthase in ciliated epithelia of rats. J Histochem Cytochem. 2003;51:81–7. https://doi.org/10.1177/002215540305100110 .
doi: 10.1177/002215540305100110 pubmed: 12502757
Kalra A, Wehrle CJ, Tuma F. Anatomy, abdomen and pelvis, peritoneum. In: StatPearls. StatPearls Publishing; 2020.
Hoare BS, Khan YS. Anatomy, Abdomen and pelvis, female internal genitals. In: StatPearls. StatPearls Publishing; 2020.
Van Langerdonckt A, Casanas-Roux F, Donnez J. Oxidative stress and peritoneal endometriosis. Fertil Steril. 2002;77:861–70. https://doi.org/10.1016/s0015-0282(02)02959-x .
doi: 10.1016/s0015-0282(02)02959-x
Das S, Chattopadhyay R, Ghosh S, Ghosh S, Goswami SK, Chakravarty BN, Chaudhury K. Reactive oxygen species level in follicular fluid: embryo quality marker in IVF? Hum Reprod. 2006;21:2403–7. https://doi.org/10.1093/humrep/del156 .
doi: 10.1093/humrep/del156 pubmed: 16861701
Donnez J, Binda MM, Donnez O, Dolmans M-M. Oxidative stress in the pelvic cavity and its role in the pathogenesis of endometriosis. Fertil Steril. 2016;106:1011–7. https://doi.org/10.1016/j.fertnstert.2016.07.1075 .
doi: 10.1016/j.fertnstert.2016.07.1075 pubmed: 27521769
Agarwal A, Durairajanayagam D, du Plessis SS. Utility of antioxidants during assisted reproductive techniques: an evidence-based review. Reprod Biol Endocrinol. 2014;12:112. https://doi.org/10.1186/1477-7827-12-112 .
doi: 10.1186/1477-7827-12-112 pubmed: 25421286 pmcid: 4258799
DeCherney A, Hill MJ. The future of imaging and assisted reproduction. In: Rizk B, editor. Ultrasonography in reproductive medicine and infertility. Cambridge University Press; 2010. p. 1–10.
Rizk B, Badr M, Talerico C. Oxidative stress and the endometrium. In: Agarwal A, Aziz N, Rizk B, editors. Studies on women’s health. Springer; 2013. p. 61–74. https://doi.org/10.1007/978-1-62703-041-0_3 .
doi: 10.1007/978-1-62703-041-0_3
Ngo C, Chereaau C, Nicco C, Weill B, Chapron C, Batteux F. Reactive oxygen species controls endometriosis progression. Am J Pathol. 2009;175:225–34. https://doi.org/10.2353/ajpath.2009.080804 .
doi: 10.2353/ajpath.2009.080804 pubmed: 19498006 pmcid: 2708809
Sikka SC. Relative impact of oxidative stress on male reproductive function. Curr Med Chem. 2001;8:851–62. https://doi.org/10.2174/0929867013373039 .
doi: 10.2174/0929867013373039 pubmed: 11375755
Chen S-J, Allam J-P, Duan Y-G, Haidi G. Influence of reactive oxygen species on human sperm functions and fertilizing capacity including therapeutical approaches. Arch Gynecol Obstet. 2013;288:191–9. https://doi.org/10.1007/s00404-013-2801-4 .
doi: 10.1007/s00404-013-2801-4 pubmed: 23543240
Haber F, Weiss J. Uber die katalyse des hydroperoxydes. Naturwissenschaften. 1932;20:948–50.
doi: 10.1007/BF01504715
Sen CK. Antioxidants and redox regulation of cellular signalling: introduction. Med Sci Sports Exerc. 2001;33:368–70. https://doi.org/10.1097/00005768-200103000-00005 .
doi: 10.1097/00005768-200103000-00005 pubmed: 11252060
Henkel RR. Leukocytes and oxidative stress: dilemma for sperm function and male fertility. Asian J Androl. 2011;13:43–52. https://doi.org/10.1038/aja.2010.76 .
doi: 10.1038/aja.2010.76 pubmed: 21076433
Agarwal A, Virk G, Ong C, du Plessis SS. Effect of oxidative stress on male reproduction. World J Mens Health. 2014;32:1–17. https://doi.org/10.5534/wjmh.2014.32.1.1 .
doi: 10.5534/wjmh.2014.32.1.1 pubmed: 24872947 pmcid: 4026229
Sabeur K, Ball BA. Characterization of NADPH oxidase 5 in equine testis and spermatozoa. Reproduction. 2007;134:263–70. https://doi.org/10.1530/REP-06-0120 .
doi: 10.1530/REP-06-0120 pubmed: 17660236
Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552:335–44. https://doi.org/10.1113/jphysiol.2003.049478 .
doi: 10.1113/jphysiol.2003.049478 pubmed: 14561818 pmcid: 2343396
Attaran M, Pasqualotto E, Falcone T, Goldberg JM, Miller KF, Agarwal A, Sharma RK. The effect of follicular fluid reactive oxygen species on the outcome of in vitro fertilization. Int J Fertil Womens Med. 2000;45:314–20.
pubmed: 11092702
Gharagozloo P, Aitken RJ. The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum Reprod. 2011;26:1628–40. https://doi.org/10.1093/humrep/der132 .
doi: 10.1093/humrep/der132 pubmed: 21546386
Agarwal A, Roychoudhury S, Bjugstad KB, Cho C-L. Oxidation-reduction potential of semen: what is its role in the treatment of male infertility? Ther Adv Urol. 2016;8:302–18. https://doi.org/10.1177/1756287216652779 .
doi: 10.1177/1756287216652779 pubmed: 27695529 pmcid: 5004233
Saleh RA, Agarwal A, Nada EA, El-Tonsy MH, Sharma RK, Meyer A, Nelson DR, Thomas AJ. Negative effects of increased sperm DNA damages in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril. 2003;79:1597–605. https://doi.org/10.1016/s0015-0282(03)00337-6 .
doi: 10.1016/s0015-0282(03)00337-6 pubmed: 12801566
Gil-Guzman E, Ollero M, Lopez MC, Shamra RK, Alvarez JG, Thomas AJ Jr, Agarwal A. Differential production of reactive oxygen species by subsets of human spermatozoa at different stages of maturation. Hum Reprod. 2001;16:1922–30. https://doi.org/10.1093/humrep/16.9.1922 .
doi: 10.1093/humrep/16.9.1922 pubmed: 11527899
Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79:829–43. https://doi.org/10.1016/s0015-0282(02)04948-8 .
doi: 10.1016/s0015-0282(02)04948-8 pubmed: 12749418
Lavranos G, Balla M, Tzortzopoulou A, Syriou V, Angelopoulou R. Investigating ROS sources in male infertility: a common end for numerous pathways. Reprod Toxicol. 2012;34:298–307. https://doi.org/10.1016/j.reprotox.2012.06.007 .
doi: 10.1016/j.reprotox.2012.06.007 pubmed: 22749934
Shang Y, Liu C, Cui D, Han G, Yi S. The effect of chronic bacterial prostatitis on semen quality in adult men: a meta-analysis of case-control studies. Sci Rep. 2014;4:7233. https://doi.org/10.1038/srep07233 .
doi: 10.1038/srep07233 pubmed: 25429735 pmcid: 4246207
Lu J-C, Huang Y-F, Lu N-Q. WHO laboratory manual for the examination and processing of human semen: its applicability to andrology laboratories in China. Zhonghua Nan Ke Xue. 2010;16:867–71.
pubmed: 21243747
Rengan AK, Agarwal A, van der Linde M, du Plessis SS. An investigation of excess residual cytoplasm in human spermatozoa and its distinction from the cytoplasmic droplet. Reprod Biol Endocrinol. 2012;10:92. https://doi.org/10.1186/1477-7827-10-92 .
doi: 10.1186/1477-7827-10-92 pubmed: 23159014 pmcid: 3551780
Aziz N, Saleh RA, Sharma RK, Lewis-Jones I, Esfandiari N, Thomas AJ Jr, Agarwal A. Novel association between sperm reactive oxygen species production, sperm morphological defects and the sperm deformity index. Fertil Steril. 2004;81:349–54. https://doi.org/10.1016/j.fertnstert.2003.06.026 .
doi: 10.1016/j.fertnstert.2003.06.026 pubmed: 14967372
Will MA, Swain J, Fode M, Sonksen J, Christman GM, Ohl D. The great debate: varicocele treatment and impact on fertility. Fertil Steril. 2011;95:841–52. https://doi.org/10.1016/j.fertnstert.2011.01.002 .
doi: 10.1016/j.fertnstert.2011.01.002 pubmed: 21272869 pmcid: 3046876
Cho C-L, Esteves SC, Agarwal A. Novel insighst into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl. 2016;18:186–93. https://doi.org/10.4103/1008-682X.170441 .
doi: 10.4103/1008-682X.170441 pubmed: 26732105
Shiraishi K, Matsuyama H, Takihara H. Pathophysiology of varicocele in male infertility in the era of assisted reproductive technology. Int J Urol. 2012;19:538–50. https://doi.org/10.1111/j.1442-2042.2012.02982.x .
doi: 10.1111/j.1442-2042.2012.02982.x pubmed: 22417329
Voglmayr JK, Setchell BP, White IG. The effects of heat on the metabolism and ultrastructure of ram testicular spermatozoa. J Reprod Fertil. 1971;24:71–80. https://doi.org/10.1530/jrf.0.0240071 .
doi: 10.1530/jrf.0.0240071 pubmed: 5539114
Morgan D, Cherny VV, Murphy R, Xu W, Thomas LL, DeCoursey TE. Temperature dependence of NADPH oxidase in human eosinophils. J Physiol. 2003;550:447–58. https://doi.org/10.1113/jphysiol.2003.041525 .
doi: 10.1113/jphysiol.2003.041525 pubmed: 12754316 pmcid: 2343059
Sakamoto Y, Ishikawa T, Kondo Y, Yamaguchi K, Fujisawa M. The assessment of oxidative stress in infertile patients with varicocele. BJU Int. 2008;101:1547–52. https://doi.org/10.1111/j.1464-410X.2008.07517.x .
doi: 10.1111/j.1464-410X.2008.07517.x pubmed: 18294306
Mostafa T, Anis T, Imam H, El-Nashar AR, Osman IA. Seminal reaxctive oxygen species-antioxidant relationship in fertile males with and without varicocele. Andrologia. 2009;41:125–9. https://doi.org/10.1111/j.1439-0272.2008.00900.x .
doi: 10.1111/j.1439-0272.2008.00900.x pubmed: 19260850
Monniaux D, Cadoret V, Clement F, Dalbies-Tran R, Elis S, Fabre S, Maillard V, Monget P, Uzbekova S. Folliculogenesis. In: Huhtaniemi I, Martini L, editors. Encyclopedia of endocrine diseases, vol. 2. 2nd ed; 2018. p. 377–98.
Tropea A, Miceli F, Minici F, Tiberi F, Orlando M, Gangale MF, Romani F, Catino S, Mancuso S, Navarra P, Lanzone A, Apa R. Regulation of vascular endothelial growth factor synthesis and release by human luteal cells in vitro. J Clin Endocrinol Metab. 2006;91:2303–9. https://doi.org/10.1210/jc.2005-2457 .
doi: 10.1210/jc.2005-2457 pubmed: 16595603
Basini G, Grasselli F, Bianco F, Tirelli M, Tamanini C. Effects of reduced oxygen tension on reactive oxygen species production and activity of antioxidant enzymes in swine granulosa cells. Biofactors. 2004;20:61–9. https://doi.org/10.1002/biof.5520200201 .
doi: 10.1002/biof.5520200201 pubmed: 15322330
Laloraya M, Pradeep KG, Laloraya MM. Changes in the levels of superoxide anion radical and superoxide dismutase during the estrous cycle of Rattus norvegicus and induction of superoxide dismutase in rat ovary by lutropin. Biochem Biophys Res Commun. 1988;157:146–53. https://doi.org/10.1016/s0006-291x(88)80025-1 .
doi: 10.1016/s0006-291x(88)80025-1 pubmed: 2848516
Devine PJ, Perreault SD, Luderer U. Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biol Reprod. 2012;86:27. https://doi.org/10.1095/biolreprod.111.095224 .
doi: 10.1095/biolreprod.111.095224 pubmed: 22034525
Yu YS, Sui HS, Han ZB, Li W, Luo MJ, Tan JH. Apoptosis in granulosa cells during follicular atresia: relationship with steroids and insulin-like growth factors. Cell Res. 2004;14:341–6. https://doi.org/10.1038/sj.cr.7290234 .
doi: 10.1038/sj.cr.7290234 pubmed: 15353131
Kaipia A, Hsueh AJ. Regulation of ovarian follicle atresia. Annu Rev Physiol. 1997;59:349–63. https://doi.org/10.1146/annurev.physiol.59.1.349 .
doi: 10.1146/annurev.physiol.59.1.349 pubmed: 9074768
Sugino N. Reactive oxygen species in ovarian physiology. Reprod Med Biol. 2005;4:31–44. https://doi.org/10.1007/BF03016135 .
doi: 10.1007/BF03016135 pubmed: 29699208 pmcid: 5904601
Forman HJ, Torres M. Reactive oxygen species and cell signalling: respiratory burst in macrophage signalling. Am J Respir Crit Care Med. 2002;166:S4–8. https://doi.org/10.1164/rccm.2206007 .
doi: 10.1164/rccm.2206007 pubmed: 12471082
Rizzo A, Roscino MT, Binetti F, Sciorsci RL. Roles of reactive oxygen species in female reproduction. Reprod Domest Anim. 2012;47:344–52. https://doi.org/10.1111/j.1439-0531.2011.01891.x .
doi: 10.1111/j.1439-0531.2011.01891.x pubmed: 22022825
Ishikawa Y, Hirai K, Ogawa K. Cytochemical localization of hydrogen peroxide production in the rat uterus. J Histochem Cytochem. 1984;32:674–6. https://doi.org/10.1177/32.6.6725936 .
doi: 10.1177/32.6.6725936 pubmed: 6725936
Hemler ME, Cook HW, Lands WE. Prostaglandin biosynthesis can be triggered by lipid peroxidase. Arch Biochem Biophys. 1979;193:340–5. https://doi.org/10.1016/0003-9861(79)90038-9 .
doi: 10.1016/0003-9861(79)90038-9 pubmed: 111619
Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ 2nd. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci U S A. 1990;87:9383–7. https://doi.org/10.1073/pnas.87.23.9383 .
doi: 10.1073/pnas.87.23.9383 pubmed: 2123555 pmcid: 55169
Riley JC, Behrman HR. Oxygen radicals and reactive oxygen species in reproduction. Proc Soc Exp Biol Med. 1991;198:781–91. https://doi.org/10.3181/00379727-198-43321c .
doi: 10.3181/00379727-198-43321c pubmed: 1946472
Russel DL, Robker RL. Molecular mechanism of ovulation: co-ordination through the cumulus complex. Hum Reprod Update. 2007;13:289–312. https://doi.org/10.1093/humupd/dml062 .
doi: 10.1093/humupd/dml062
Richards JS, Russell DL, Ochsner S, Espey LL. Ovulation: new dimensions and new regulators of the inflammatory-like response. Annu Rev Physiol. 2002;64:69–92. https://doi.org/10.1146/annurev.physiol.64.081501.131029 .
doi: 10.1146/annurev.physiol.64.081501.131029 pubmed: 11826264
Shkolnik K, Tadmor A, Ben-Dor S, Nevo N, Galiani D, Dekel N. Reactive oxygen species are indispensable in ovulation. Proc Natl Acad Sci U S A. 2011;108:1462–7. https://doi.org/10.1073/pnas.1017213108 .
doi: 10.1073/pnas.1017213108 pubmed: 21220312 pmcid: 3029775
Brannstrom M, Mayrhofer G, Robertson SA. Localization of leukocyte subsets in the rat ovary during the pre-ovulatory period. Biol Reprod. 1993;48:277–86. https://doi.org/10.1095/biolreprod48.2.277 .
doi: 10.1095/biolreprod48.2.277 pubmed: 8439617
Van der Hoek KH, Maddocks S, Woodhouse CM, van Rooijen N, Robertson SA, Norman RJ. Intrabursal injection of clodronate liposomes cause macrophage depletion and inhibits ovulation in the mouse ovary. Biol Reprod. 2000;62:1059–66. https://doi.org/10.1095/biolreprod62.4.1059 .
doi: 10.1095/biolreprod62.4.1059 pubmed: 10727278
DeYulia GJ Jr, Carcamo JM. EFG receptor-ligand interaction generates extracellular hydrogen peroxide that inhibits EGFR-associated protein tyrosine phosphatases. Biochem Biophys Res Commun. 2005;334:38–42. https://doi.org/10.1016/j.bbrc.2005.06.056 .
doi: 10.1016/j.bbrc.2005.06.056 pubmed: 15982634
Hsieh M, Lee D, Panigone S, Horner K, Chen R, Theologis A, Lee DC, Threadgill DW, Conti M. Luteinizing hormone-dependent activation of the epidermal growth factor network is essential for ovulation. Mol Cell Biol. 2007;27:1914–24. https://doi.org/10.1128/MCB.01919-06 .
doi: 10.1128/MCB.01919-06 pubmed: 17194751
Miyazaki T, Sueoka K, Dharmarajan AM, Atlas SJ, Bulkley GB, Wallach EE. Effect of inhibition of oxygen free radical on ovulation and progesterone production by the in-vitro perfused rabbit ovary. J Reprod Fertil. 1991;91:207–12. https://doi.org/10.1530/jrf.0.0910207 .
doi: 10.1530/jrf.0.0910207 pubmed: 1995849
Chen L, Russell PT, Larsen WJ. Functional significance of cumulus expansion in the mouse: roles for the preovulatory synthesis of hyaluronic acid within the cumulus mass. Mol Reprod Dev. 1993;34:87–93. https://doi.org/10.1002/mrd.1080340114 .
doi: 10.1002/mrd.1080340114 pubmed: 8418823
Kodaman PH, Behrman HR. Endocrine-regulated and protein kinase C-dependent generation of superoxide by rat preovulatory follicles. Endocrinology. 2001;142:687–93. https://doi.org/10.1210/endo.142.2.7961 .
doi: 10.1210/endo.142.2.7961 pubmed: 11159840
de Lamirande E, Gagnon C. Reactive oxygen species (ROS) and reproduction. In: Armstrong D, editor. Free radicals in diagnostic medicine. Springer; 1994. p. 185–97. https://doi.org/10.1007/978-1-4615-1833-4_14 .
doi: 10.1007/978-1-4615-1833-4_14
Al-Gubory KH, Garrel C, Faure P, Sugino N. Roles of antioxidant enzymes in corpus luteum rescue from reactive oxygen species-induced oxidative stress. Reprod Biomed Online. 2012;25:551–60. https://doi.org/10.1016/j.rbmo.2012.08.004 .
doi: 10.1016/j.rbmo.2012.08.004 pubmed: 23063822
Sawada M, Carlson JC. Studies on the mechanism controlling generation of superoxide radical in luteinized rat ovaries during regression. Endocrinology. 1994;135:1645–50. https://doi.org/10.1210/endo.135.4.7925128 .
doi: 10.1210/endo.135.4.7925128 pubmed: 7925128
Tanaka M, Miyazaki T, Tanigaki S, Kasai K, Minegishi K, Miyakoshi K, Ishimoto H, Yoshimura Y. Participation of reactive oxygen species in PGF2alpha-induced apoptosis in rat luteal cells. J Reprod Fertil. 2000;120:239–45. https://doi.org/10.1530/jrf.0.1200239 .
doi: 10.1530/jrf.0.1200239 pubmed: 11058439
Noda Y, Ota K, Shirasawa T, Shimizu T. Copper/zinc superoxide dismutase insufficiency impairs progesterone secretion and fertility in female mice. Biol Reprod. 2012;86:1–8. https://doi.org/10.1095/biolreprod.111.092999 .
doi: 10.1095/biolreprod.111.092999 pubmed: 21900685
Shimamura K, Sugino N, Yoshida Y, Nakamura Y, Ogino K, Kato H. Changes in lipid peroxide and antioxidant enzyme activities in corpora lutea during pseudopregnancy in rats. J Reprod Fertil. 1995;105:253–7. https://doi.org/10.1530/jrf.0.1050253 .
doi: 10.1530/jrf.0.1050253 pubmed: 8568768
Sawada M, Carlson JC. Superoxide radical production in plasma membrane samples from regressing rat corpora lutea. Can J Physiol Pharmacol. 1989;67:465–71. https://doi.org/10.1139/y89-074 .
doi: 10.1139/y89-074 pubmed: 2548692
Behrman HR, Preston SL. Luteolytic actions of peroxide in rat ovarian cells. Endocrinology. 1989;124:2895–900. https://doi.org/10.1210/endo-124-6-2895 .
doi: 10.1210/endo-124-6-2895 pubmed: 2470582
Behrman HR, Alten RF. Evidence that hydrogen peroxide blocks hormone-sensitive cholesterol transport into mitochondria of rat luteal cells. Endocrinology. 1991;128:2958–66. https://doi.org/10.1210/endo-128-6-2958 .
doi: 10.1210/endo-128-6-2958 pubmed: 2036971
Gagioti S, Colepicolo P, Bevilacqua E. Post-implantation mouse embryos have the capability to generate and release reactive oxygen species. Reprod Fertil Dev. 1995;7:1111–6. https://doi.org/10.1071/rd9951111 .
doi: 10.1071/rd9951111 pubmed: 8848578
Nasr-Esfahani MH, Winston NJ, Johnson MH. Effect of glucose, glutamine, ethylenediaminetetraacetic acid and oxygen tension on the concentration of reactive oxygen species and on development of the mouse preimplantation embryo in vitro. J Reprod Fertil. 1992;96:219–31. https://doi.org/10.1530/jrf.0.0960219 .
doi: 10.1530/jrf.0.0960219 pubmed: 1432953
Yamashita T, Yamazaki H, Kon Y, Watanabe T, Arikawa J, Miyoshi I, Kasai N, Kuwabara M. Progressive effect of alpha-phenyl-N-tert-butyl nitrone (PBN) on rat embryo development in vitro. Free Radic Biol Med. 1997;23:1073–7. https://doi.org/10.1016/s0891-5849(97)00139-1 .
doi: 10.1016/s0891-5849(97)00139-1 pubmed: 9358251
Guerin P, El Mouatassim S, Menezo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update. 2001;7:175–89. https://doi.org/10.1093/humupd/7.2.175 .
doi: 10.1093/humupd/7.2.175 pubmed: 11284661
Mannaerts D, Faes E, Cos P, Briede JJ, Gyselaers W, Cornette J, Gorbanev Y, Bogaerts A, Spaanderman M, Van Craenenbroek E, Jacquemyn Y. Oxidative stress in healthy pregnancy and preeclampsia in linked to chronic inflammation, iron status and vascular function. PLoS One. 2018;13:e0202919. https://doi.org/10.1371/journal.pone.0202919 .
doi: 10.1371/journal.pone.0202919 pubmed: 30204759 pmcid: 6133366
Myatt L, Cui X. Oxidative stress in the placenta. Histochem Cell Biol. 2004;122:369–82. https://doi.org/10.1007/s00418-004-0677-x .
doi: 10.1007/s00418-004-0677-x pubmed: 15248072
Abrahams VM, Kim YM, Straszewski SL, Romero R, Mor G. Macrophage and apoptotic cell clearance during pregnancy. Am J Reprod Immunol. 2004;51:275–82. https://doi.org/10.1111/j.1600-0897.2004.00156.x .
doi: 10.1111/j.1600-0897.2004.00156.x pubmed: 15212680
Khalil A, Jauniaux E, Cooper D, Harrington K. Pulse wave analysis in normal pregnancy: a prospective longitudinal study. PLoS One. 2009;4:e6134. https://doi.org/10.1371/journal.pone.0006134 .
doi: 10.1371/journal.pone.0006134 pubmed: 19578538 pmcid: 2700961
Wu F, Tian F-J, Lin Y, Xu W-M. Oxidative stress: placenta function and dysfunction. Am J Reprod Immunol. 2016;76:258–71. https://doi.org/10.1111/aji.12454 .
doi: 10.1111/aji.12454 pubmed: 26589876
Krause BJ, Hanson MA, Casanello P. Role of nitric oxide in placental vascular development and function. Placenta. 2011;32:797–805. https://doi.org/10.1016/j.placenta.2011.06.025 .
doi: 10.1016/j.placenta.2011.06.025 pubmed: 21798594 pmcid: 3218217
Wu F, Tian F-J, Lin Y. Oxidative stress in placenta: health and diseases. Biomed Res Int. 2015;2015:293271. https://doi.org/10.1155/2015/293271 .
doi: 10.1155/2015/293271 pubmed: 26693479 pmcid: 4676991
Liu A-X, Jin F, Zhang W-W, Zhou T-H, Zhou C-Y, Yao W-M, Qian Y-L, Huang H-F. Proteomic analysis on the alteration of protein expression in the placental villous tissue of early pregnancy loss. Biol Reprod. 2006;75:414–20. https://doi.org/10.1095/biolreprod.105.049379 .
doi: 10.1095/biolreprod.105.049379 pubmed: 16738225
Conner EM, Grisham MB. Inflammation, free radicals and antioxidants. Nutrition. 1996;12:274–7. https://doi.org/10.1016/s0899-9007(96)00000-8 .
doi: 10.1016/s0899-9007(96)00000-8 pubmed: 8862535
Jenkin G, Young IR. Mechanism responsible for parturition: the use of experimental models. Anim Reprod Sci. 2004;82–83:567–81. https://doi.org/10.1016/j.anireprosci.2004.05.010 .
doi: 10.1016/j.anireprosci.2004.05.010 pubmed: 15271480
Golightly E, Jabbour HN, Norman JE. Endocrine immune interactions in human parturition. Mol Cell Endocrinol. 2011;335:52–9. https://doi.org/10.1016/j.mce.2010.08.005 .
doi: 10.1016/j.mce.2010.08.005 pubmed: 20708653
Masumoto N, Tasaka K, Miyake A, Tanizawa O. Superoxide anion increases intracellular free calcium in human myometrial cells. J Biol Chem. 1990;265:22533–6.
doi: 10.1016/S0021-9258(18)45738-9
Appiah I, Milovanovic S, Radojicic R, Nikolic-Kokic A, Orescanin-Dusic Z, Slavic M, Trbojevic S, Skrbic R, Spasic M, Blagojevic D. Hydrogen peroxide affects contractile activity and antioxidant enzymes in rat uterus. Br J Pharmacol. 2009;158:1932–41. https://doi.org/10.1111/j.1476-5381.2009.00490.x .
doi: 10.1111/j.1476-5381.2009.00490.x pubmed: 19917063 pmcid: 2807655
O’Donovan DJ, Fernandes CJ. Free radicals and diseases in premature infants. Antioxid Redox Signal. 2004;6:169–76. https://doi.org/10.1089/152308604771978471 .
doi: 10.1089/152308604771978471 pubmed: 14713348
Kovalski N, de Lamirande E, Gagnon C. Reactive oxygen species generated by human neutrophils inhibit sperm motility: protective effect of seminal plasma and scavengers. Fertil Steril. 1992;58:809–16. https://doi.org/10.1016/S0015-0282(16)55332-1 .
doi: 10.1016/S0015-0282(16)55332-1 pubmed: 1426329
Guerriero G, Trocchia S, Abdel-Gawad FK, Ciarcia G. Roles of reactive oxygen species in the spermatogenesis regulation. Front Endocrinol (Lausanne). 2014;5:56. https://doi.org/10.3389/fendo.2014.00056 .
doi: 10.3389/fendo.2014.00056
Shi Y, Buffenstein R, Pulliam DA, Van Remmen H. Comparative study of oxidative stress and mitochondrial function in aging. Integr Comp Biol. 2010;50:869–79. https://doi.org/10.1093/icb/icq079 .
doi: 10.1093/icb/icq079 pubmed: 21558246
Fujii J, Imai H. Redox reactions in mammalian spermatogenesis and the potential targets of reactive oxygen species under oxidative stress. Spermatogenesis. 2014;4:e979108. https://doi.org/10.4161/21565562.2014.979108 .
doi: 10.4161/21565562.2014.979108 pubmed: 26413390 pmcid: 4581049
Lui W-Y, Cheng CY. Transcription regulation in spermatogenesis. Adv Exp Med Biol. 2008;636:115–32. https://doi.org/10.1007/978-0-387-09597-4_7 .
doi: 10.1007/978-0-387-09597-4_7 pubmed: 19856165
Chen C, Ouyang W, Grigura V, Zhou Q, Carnes K, Lim H, Zhao G-Q, Arber S, Kurpios N, Murphy TL, Cheng AM, Hassell JA, Chandrashekar V, Hofmann M-C, Hess RA, Murphy KM. ERM is required for transcriptional control of the spermatogonial stem cell niche. Nature. 2005;436:1030–4. https://doi.org/10.1038/nature03894 .
doi: 10.1038/nature03894 pubmed: 16107850 pmcid: 2909764
Grimes SR. Testis-specific transcriptional control. Gene. 2004;343:11–22. https://doi.org/10.1016/j.gene.2004.08.021 .
doi: 10.1016/j.gene.2004.08.021 pubmed: 15563828
Aitken RJ, Roman SD. Antioxidant system and oxidative stress in the stress. Oxidative Med Cell Longev. 2008;1:15–24. https://doi.org/10.4161/oxim.1.1.6843 .
doi: 10.4161/oxim.1.1.6843
Montano MM, Deng H, Liu M, Sun X, Singal R. Transcriptional regulation by the estrogen receptor of antioxidative stress enzymes and its functional implications. Oncogene. 2004;23:2442–53. https://doi.org/10.1038/sj.onc.1207358 .
doi: 10.1038/sj.onc.1207358 pubmed: 14676828
Aitken RJ, Gordon E, Harkiss D, Twigg JP, Milne P, Jennings Z, Irvine DS. Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol Reprod. 1998;59:1037–46. https://doi.org/10.1095/biolreprod59.5.1037 .
doi: 10.1095/biolreprod59.5.1037 pubmed: 9780307
Saowaros W, Panyim S. The formation of disulphide bonds in human protamines during sperm maturation. Experientia. 1979;35:191–2. https://doi.org/10.1007/BF01920608 .
doi: 10.1007/BF01920608 pubmed: 421827
Cheng W-M, An L, Wu Z-H, Zhu Y-B, Liu J-H, Gao H-M, Li X-H, Zheng S-J, Chen D-B, Tian J-H. Effects of disulphide bond reducing agents on sperm chromatin structural integrity and developmental competence of in vitro matured oocytes after intracytoplasmic sperm injection in pigs. Reproduction. 2009;137:633–43. https://doi.org/10.1530/REP-08-0143 .
doi: 10.1530/REP-08-0143 pubmed: 19155332
Hutchinson JM, Rau DC, DeRouchey JE. Role of disulphide bonds on DNA packaging forces in bull sperm chromatin. Biophys J. 2017;113:1925–33. https://doi.org/10.1016/j.bpj.2017.08.050 .
doi: 10.1016/j.bpj.2017.08.050
Rousseaux J, Rousseaux-Prevost R. Molecular localization of free thiols in human sperm chromatin. Biol Reprod. 1995;52:1066–72. https://doi.org/10.1095/biolreprod52.5.1066 .
doi: 10.1095/biolreprod52.5.1066 pubmed: 7626706
Roveri A, Ursini F, Flohe L, Maiorino M. PHGPx and spermatogenesis. Biofactors. 2001;14:213–22. https://doi.org/10.1002/biof.5520140127 .
doi: 10.1002/biof.5520140127 pubmed: 11568459
Eisenbach M. Mammalian sperm chemotaxis and its association with capacitation. Dev Genet. 1999;25:87–94. https://doi.org/10.1002/(SICI)1520-6408(1999)25:2<87::AID-DVG2>3.0.CO;2-4 .
doi: 10.1002/(SICI)1520-6408(1999)25:2<87::AID-DVG2>3.0.CO;2-4 pubmed: 10440842
Aitken RJ. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol Reprod Dev. 2017;84:1039–52. https://doi.org/10.1002/mrd.22871 .
doi: 10.1002/mrd.22871 pubmed: 28749007
Gualtieri R, Mollo V, Duma G, Talevi R. Redox control of surface protein sulphhydryls in bovine spermatozoa reversibly modulates sperm adhesion to the oviductal epithelium and capacitation. Reproduction. 2009;138:33–43. https://doi.org/10.1530/REP-08-0514 .
doi: 10.1530/REP-08-0514 pubmed: 19439561
O’Flaherty C. Redox regulation of mammalian sperm capacitation. Asian J Urol. 2015;17:583–90. https://doi.org/10.4103/1008-682X.153303 .
doi: 10.4103/1008-682X.153303
Kralikova M, Crha I, Huser M, Melounova J, Zakova J, Matejovicova M, Ventruba P. The intracellular concentration of homocysteine and related thiols is negatively correlated to sperm quality after highly effective method of sperm lysis. Andrologia. 2017;49:e12702. https://doi.org/10.1111/and.12702 .
doi: 10.1111/and.12702
de Lamirande E, Harakat A, Gagnon C. Human sperm capacitation induced by biological fluids and progesterone, but not by NADH or NADPH, is associated with the production of superoxide anion. J Androl. 1998;19:215–25. https://doi.org/10.1002/j.1939-4640.1998.tb01991.x .
doi: 10.1002/j.1939-4640.1998.tb01991.x pubmed: 9570746
Suarez SS. Control of hyperactivation in sperm. Hum Reprod Update. 2008;14:647–57. https://doi.org/10.1093/humupd/dmn029 .
doi: 10.1093/humupd/dmn029 pubmed: 18653675
de Lamirande E, Jiang H, Zini A, Kodama H, Gagnon C. Reactive oxygen species and sperm physiology. Rev Reprod. 1997;2:48–54. https://doi.org/10.1530/ror.0.0020048 .
doi: 10.1530/ror.0.0020048 pubmed: 9414465
Zini A, de Lamirande E, Gagnon C. Low levels of nitric oxide promote human sperm capacitation in vitro. J Androl. 1995;16:424–31. https://doi.org/10.1002/j.1939-4640.1995.tb00558.x .
doi: 10.1002/j.1939-4640.1995.tb00558.x pubmed: 8575982
de Lamirande E, Lamothe G. Reactive oxygen-induces reactive oxygen formation during human sperm capacitation. Free Radic Biol Med. 2009;46:502–10. https://doi.org/10.1016/j.freeradbiomed.2008.11.004 .
doi: 10.1016/j.freeradbiomed.2008.11.004 pubmed: 19071212
du Plessis SS, Agarwal A, Halabi J, Tvrda E. Contemporary evidence on the physiological role of reactive oxygen species in human sperm function. J Assist Reprod Genet. 2015;32:509–20. https://doi.org/10.1007/s10815-014-0425-7 .
doi: 10.1007/s10815-014-0425-7 pubmed: 25646893 pmcid: 4380893
Breitbart H, Spungin B. The biochemistry of the acrosome reaction. Mol Hum Reprod. 1997;3:195–202. https://doi.org/10.1093/molehr/3.3.195 .
doi: 10.1093/molehr/3.3.195 pubmed: 9237245
Breitbart H, Naor Z. Protein kinase in mammalian sperm capacitation and the acrosome reaction. Rev Reprod. 1999;4:151–9. https://doi.org/10.1530/ror.0.0040151 .
doi: 10.1530/ror.0.0040151 pubmed: 10521152
Ichikawa T, Oeda T, Ohmori H, Schill WB. Reactive oxygen species influence the acrosome reaction but not acrosin activity in human spermatozoa. Int J Androl. 1999;22:37–42. https://doi.org/10.1046/j.1365-2605.1999.00145.x .
doi: 10.1046/j.1365-2605.1999.00145.x pubmed: 10068942
de Lamirande E, Gagnon C. A positive role for the superoxide anion in triggering hyperactivation and capacitation of human spermatozoa. Int J Androl. 1993;16:21–5. https://doi.org/10.1111/j.1365-2605.1993.tb01148.x .
doi: 10.1111/j.1365-2605.1993.tb01148.x pubmed: 8385650
Boerke A, Tsai PS, Garcia-Gill N, Brewis IA, Gadella BM. Capacitation-dependent reorganization of microdomains in the apical sperm head plasma membrane: functional relationship with zona binding and the zona-induced acrosome reaction. Theriogenology. 2008;70:1188–96. https://doi.org/10.1016/j.theriogenology.2008.06.021 .
doi: 10.1016/j.theriogenology.2008.06.021 pubmed: 18640708
de Lamirande E, Tsai C, Harakat A, Gagnon C. Involvement of reactive oxygen species in human sperm acrosome reaction induced by A23187, lysophosphatidylcholine and biological fluid ultrafiltrates. J Androl. 1998;19:585–94. https://doi.org/10.1002/j.1939-4640.1998.tb02061.x .
doi: 10.1002/j.1939-4640.1998.tb02061.x pubmed: 9796619
Herrero MB, de Lamirande E, Gagnon C. Nitric oxide is a signalling molecule in spermatozoa. Curr Pharm Des. 2003;9:419–25. https://doi.org/10.2174/1381612033391720 .
doi: 10.2174/1381612033391720 pubmed: 12570819
Aitken RJ, Paterson M, Fisher H, Buckingham DW, van Duin M. Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J Cell Sci. 1995;108:2017–25. https://doi.org/10.1242/jcs.108.5.2017 .
doi: 10.1242/jcs.108.5.2017 pubmed: 7544800
Griveau JF, Renard P, Le Lannou D. Superoxide anion production by human spermatozoa as a part of the ionophore-induced acrosome reaction process. Int J Androl. 1995;18:67–74. https://doi.org/10.1111/j.1365-2605.1995.tb00388.x .
doi: 10.1111/j.1365-2605.1995.tb00388.x pubmed: 7665212
Aitken RJ, Buckingham DW, Harkiss D, Paterson M, Fisher H, Irvine DS. The extragenomic action of progesterone on human spermatozoa is influenced by redox regulated changes in tyrosine phosphorylation during capacitation. Mol Cell Endocrinol. 1996;117:83–93. https://doi.org/10.1016/0303-7207(95)03733-0 .
doi: 10.1016/0303-7207(95)03733-0 pubmed: 8734476
Aitken RJ, Buckingham DW, West KM. Reactive oxygen species and human spermatozoa: analysis of the cellular mechanism involved in luminol- and lucigenin-dependent chemiluminescence. J Cell Physiol. 1992;151:466–77. https://doi.org/10.1002/jcp.1041510305 .
doi: 10.1002/jcp.1041510305 pubmed: 1338331
Ohzu E, Yanagimachi R. Acceleration of acrosome reaction in hamster spermatozoa by lysolecithin. J Exp Zool. 1982;224:259–63. https://doi.org/10.1002/jez.1402240216 .
doi: 10.1002/jez.1402240216 pubmed: 7153725
Goldman R, Ferber E, Zort U. Reactive oxygen species are involved in the activation of cellular phospholipase A2. FEBS Lett. 1992;309:190–2. https://doi.org/10.1016/0014-5793(92)81092-z .
doi: 10.1016/0014-5793(92)81092-z pubmed: 1505682
Zor U, Ferber E, Gergely P, Szucs K, Dombradi V, Goldman R. Reactive oxygen species mediate phorbol ester-regulated tyrosine phosphorylation and phospholipase A2 activation: potentiation by vanadate. Biochem J. 1993;295:879–88. https://doi.org/10.1042/bj2950879 .
doi: 10.1042/bj2950879 pubmed: 7694572 pmcid: 1134643
Aitken RJ. Molecular mechanisms regulating human sperm function. Mol Hum Reprod. 1997;3:169–73. https://doi.org/10.1093/molehr/3.3.169 .
doi: 10.1093/molehr/3.3.169 pubmed: 9237243
Sanchez R, Sepulveda C, Risopatron J, Villegas J, Giojalas LC. Human sperm chemotaxis depends on critical levels of reactive oxygen species. Fertil Steril. 2010;93:150–3. https://doi.org/10.1016/j.fertnstert.2008.09.049 .
doi: 10.1016/j.fertnstert.2008.09.049 pubmed: 18976761
Sharma R, Roychoudhury S, Alsaad R, Bamajbuor F. Negative effects of oxidative stress (OS) on reproductive system at cellular level. In: Agarwal A, Sharma RK, Gupta S, Harlev A, Ahmad G, du Plessis SS, Esteves SC, Wang SM, Durairajanayagam D, editors. Oxidative stress in human reproduction shedding light on a complicated phenomenon. Springer; 2017. p. 65–88. https://doi.org/10.1007/978-3-319-48427-3_4 .
doi: 10.1007/978-3-319-48427-3_4

Auteurs

Anandan Das (A)

Department of Life Science and Bioinformatics, Assam University, Silchar, India.

Shubhadeep Roychoudhury (S)

Department of Life Science and Bioinformatics, Assam University, Silchar, India. shubhadeep1@gmail.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH