Reactive Oxygen Species in the Reproductive System: Sources and Physiological Roles.
Acrosome reaction
Endometrium
Female
Free radicals
Hyperactivation
Implantation
Male
Ovulation
Oxidative stress
Spermatozoa
Journal
Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103
Informations de publication
Date de publication:
2022
2022
Historique:
entrez:
31
5
2022
pubmed:
1
6
2022
medline:
3
6
2022
Statut:
ppublish
Résumé
Reactive oxygen species (ROS) are oxygen-containing molecules which are reactive in nature and are capable of independent existence in the body. ROS comprise mostly of free radicals that contain at least one unpaired electron. Endogenous sources are the foremost birthplaces of ROS, which include mitochondrial electron transport chain, endoplasmic reticulum and peroxisome. Conversely, numerous enzymatic pathways such as xanthine oxidase and cyclooxygenase systems are among the prominent generators of cellular ROS. Major sources of ROS in the female reproductive tract include Graafian follicles, follicular fluid, fallopian tube, peritoneal cavity and endometrium. On the contrary, leukocytes, immature spermatozoa and varicocele are the key originators of ROS in the male reproductive system. For the sake of maintaining a proper oxidative balance, cells have evolved a variety of antioxidative molecules. From the physiological perspective, ROS and antioxidants are actively involved in the regulation of myriad female reproductive processes, such as cyclic luteal and endometrial changes, follicular development, ovulation, fertilization, embryonic implantation, maintenance of pregnancy and parturition. Similarly, physiological amounts of ROS are crucial in the accomplishment of various male reproductive functions as well, which include spermatozoa maturation, capacitation, hyperactivation and acrosome reaction. This chapter highlights the birthplaces of ROS in the female and male reproductive tract along with mechanisms of their production. This chapter will also put forward specific physiological roles of these reactive molecules in upholding the structural integrity and functionality of both the reproductive systems.
Identifiants
pubmed: 35641864
doi: 10.1007/978-3-030-89340-8_2
doi:
Substances chimiques
Antioxidants
0
Reactive Oxygen Species
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
9-40Informations de copyright
© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.
Références
Ray PD, Huang B-W, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signalling. Cell Signal. 2012;24:981–90. https://doi.org/10.1016/j.cellsig.2012.01.008 .
doi: 10.1016/j.cellsig.2012.01.008
pubmed: 22286106
pmcid: 3454471
Snezkina AV, Kudryavtseva AV, Kardymon OL, Savvateeva MV, Melnikova NV, Krasnov GS, Dmitriev AA. ROS generation and antioxidant defence systems in normal and malignant cells. Oxidative Med Cell Longev. 2019;2019:6175804. https://doi.org/10.1155/2019/6175804 .
doi: 10.1155/2019/6175804
Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005;3:28. https://doi.org/10.1186/1477-7827-3-28 .
doi: 10.1186/1477-7827-3-28
pubmed: 16018814
pmcid: 1215514
Al-Gubory KH, Fowler PA, Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol. 2010;42:1634–50. https://doi.org/10.1016/j.biocel.2010.06.001 .
doi: 10.1016/j.biocel.2010.06.001
pubmed: 20601089
Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47. https://doi.org/10.1038/35041687 .
doi: 10.1038/35041687
pubmed: 11089981
Schieber M, Chandel NS. ROS function in redox signalling and oxidative stress. Curr Biol. 2014;24:R453–62. https://doi.org/10.1016/j.cub.2014.03.034 .
doi: 10.1016/j.cub.2014.03.034
pubmed: 24845678
pmcid: 4055301
Ahmad G, Almasry M, Dhillon AS, Abuayyash MM, Kothandaraman N, Cakar Z. Overview and sources of reactive oxygen species (ROS) in the reproductive system. In: Agarwal A, Sharma RK, Gupta S, Harlev A, Ahmad G, du Plessis SS, Esteves SC, Wang SM, Durairajanayagam D, editors. Oxidative stress in human reproduction shedding light on a complicated phenomenon. Springer; 2017. p. 1–16. https://doi.org/10.1007/978-3-319-48427-3_1 .
doi: 10.1007/978-3-319-48427-3_1
Finkel T. Signal transduction by reactive oxygen species. J Cell Biol. 2011;194:7–15. https://doi.org/10.1083/jcb.201102095 .
doi: 10.1083/jcb.201102095
pubmed: 21746850
pmcid: 3135394
Roychoudhury S, Agarwal A, Virk G, Cho C-L. Potential role of green tea catechins in the management of oxidative stress-associated infertility. Reprod Biomed Online. 2017;34:487–98. https://doi.org/10.1016/j.rbmo.2017.02.006 .
doi: 10.1016/j.rbmo.2017.02.006
pubmed: 28285951
Wood ZA, Poole LB, Karplus PA. Peroxiredoxin evolution and the regulation of hydrogen peroxide signalling. Science. 2003;300:650–3. https://doi.org/10.1126/science.1080405 .
doi: 10.1126/science.1080405
pubmed: 12714747
du Plessis SS, Harlev A, Mohamed MI, Habib E, Kothandaraman N, Cakar Z. Physiological roles of reactive oxygen species (ROS) in the reproductive system. In: Agarwal A, Sharma RK, Gupta S, Harlev A, Ahmad G, du Plessis SS, Esteves SC, Wang SM, Durairajanayagam D, editors. Oxidative stress in human reproduction shedding light on a complicated phenomenon. Springer; 2017. p. 47–64. https://doi.org/10.1007/978-3-319-48427-3_3 .
doi: 10.1007/978-3-319-48427-3_3
Aitken RJ, Clarkson JS, Fishel S. Generation of reactive oxygen species, lipid peroxidation and human sperm function. Biol Reprod. 1989;41:183–97. https://doi.org/10.1095/biolreprod41.1.183 .
doi: 10.1095/biolreprod41.1.183
pubmed: 2553141
Martindale JL, Holbrook NJ. Cellular response to oxidative stress: signalling for suicide and survival. J Cell Physiol. 2002;192:1–15. https://doi.org/10.1002/jcp.10119 .
doi: 10.1002/jcp.10119
pubmed: 12115731
Li R, Jia Z, Trush MA. Defining ROS in biology and medicine. React Oxyg Species. 2016;1:9–21. https://doi.org/10.20455/ros.2016.803 .
doi: 10.20455/ros.2016.803
Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxidative Med Cell Longev. 2016;2016:1245049. https://doi.org/10.1155/2016/1245049 .
doi: 10.1155/2016/1245049
Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets and their implication in various diseases. Indian J Clin Biochem. 2015;30:11–26. https://doi.org/10.1007/s12291-014-0446-0 .
doi: 10.1007/s12291-014-0446-0
pubmed: 25646037
Nunes-Silva A, Freitas-Lima L. The association between physical exercise and reactive oxygen species (ROS) production. J Sports Med Doping Stud. 2014;4:2161-0673.1000152. https://doi.org/10.4172/2161-0673.1000152 .
doi: 10.4172/2161-0673.1000152
Buettner GR. Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide. Anti Cancer Agents Med Chem. 2011;11:341–6. https://doi.org/10.2174/187152011795677544 .
doi: 10.2174/187152011795677544
Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95. https://doi.org/10.1152/physrev.00018.2001 .
doi: 10.1152/physrev.00018.2001
pubmed: 11773609
Kehrer JP, Robertson JD, Smith CV. Free radicals and reactive oxygen species. In: McQueen CA, editor. Comprehensive toxicology, vol. 1. 2nd ed. London: Elsevier Inc; 2010. p. 277–307.
doi: 10.1016/B978-0-08-046884-6.00114-7
Fridovich I. Superoxide radical: an endogenous toxicant. Annu Rev Pharmacol Toxicol. 1983;23:239–57. https://doi.org/10.1146/annurev.pa.23.040183.001323 .
doi: 10.1146/annurev.pa.23.040183.001323
pubmed: 6307121
Fridovich I. The biology of oxygen radicals. Science. 1978;201:875–80. https://doi.org/10.1126/science.210504 .
doi: 10.1126/science.210504
pubmed: 210504
Tchobanoglous G, Burton FL, Stensel HD. Wasterwater engineering: treatment and reuse. 4th ed. New York: Mc Graw Hill; 2003.
Munter R. Advanced oxidation processes: current status and prospects. Proc Estonian Acad Sci Chem. 2001;50:59–80.
doi: 10.3176/chem.2001.2.01
Underbakke ES, Surmeli NB, Smith BC, Wynia-Smith SL, Marletta MA. Nitric oxide signalling. In: Reedijk J, Poeppelmeier K, editors. Comprehensive inorganic chemistry ІІ: from elements to applications. 2nd ed. London: Elsevier Inc; 2013. p. 241–62. https://doi.org/10.1016/B978-0-08-097774-4.00320-X .
doi: 10.1016/B978-0-08-097774-4.00320-X
Radi R. Oxygen radicals, nitric oxide and peroxynitrite: redox pathways in molecular medicine. Proc Natl Acad Sci U S A. 2018;115:5839–48. https://doi.org/10.1073/pnas.1804932115 .
doi: 10.1073/pnas.1804932115
pubmed: 29802228
pmcid: 6003358
Bruckdorfer R. The basics about nitric oxide. Mol Asp Med. 2005;26:3–31. https://doi.org/10.1016/j.mam.2004.09.002 .
doi: 10.1016/j.mam.2004.09.002
Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal. 2007;19:1807–19. https://doi.org/10.1016/j.cellsig.2007.04.009 .
doi: 10.1016/j.cellsig.2007.04.009
pubmed: 17570640
Wong H-S, Dighe PA, Mezera V, Monternier P-A, Brand MD. Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J Biol Chem. 2017;292:16804–9. https://doi.org/10.1074/jbc.R117.789271 .
doi: 10.1074/jbc.R117.789271
pubmed: 28842493
pmcid: 5641882
Giorgio M, Trinei M, Migliaccio E, Pelicci PG. Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol. 2007;8:722–8. https://doi.org/10.1038/nrm2240 .
doi: 10.1038/nrm2240
pubmed: 17700625
Dringen R, Pawlowski PG, Hirrlinger J. Peroxide detoxification by brain cells. J Neurosci Res. 2005;79:157–65. https://doi.org/10.1002/jnr.20280 .
doi: 10.1002/jnr.20280
pubmed: 15573410
Halliwell B, Clement MV, Long LH. Hydrogen peroxide in the human body. FEBS Lett. 2000;486:10–3. https://doi.org/10.1016/s0014-5793(00)02197-9 .
doi: 10.1016/s0014-5793(00)02197-9
pubmed: 11108833
Armogida M, Nistico R, Mercury NB. Therapeutic potential of targeting hydrogen peroxide metabolism in the treatment of brain ischemia. Br J Pharmacol. 2012;166:1211–24. https://doi.org/10.1111/j.1476-5381.2012.01912.x .
doi: 10.1111/j.1476-5381.2012.01912.x
pubmed: 22352897
pmcid: 3417441
Aldred EM, Buck C, Vall K. Free radicals. In: Pharmacology: A handbook for Complementary Healthcare Professionals. London: Elsevier Inc; 2009. p. 1–3.
Hrycay EG, Bandiera SM. Involvement of cytochrome P450 in reactive oxygen species formation and cancer. Adv Pharmacol. 2015;74:35–84. https://doi.org/10.1016/bs.apha.2015.03.003 .
doi: 10.1016/bs.apha.2015.03.003
pubmed: 26233903
Manda G, Nechifor M, Neagu M. Reactive oxygen species, cancer and anti-cancer therapies. Curr Chem Biol. 2009;3:22–46.
doi: 10.2174/187231309787158271
Stief TW. The physiology and pharmacology of singlet oxygen. Med Hypotheses. 2003;60:567–72. https://doi.org/10.1016/s0306-9877(03)00026-4 .
doi: 10.1016/s0306-9877(03)00026-4
pubmed: 12615524
pmcid: 7157913
Schoonbroodt S, Legrand-Poels S, Best-Belpomme M, Piette J. Activation of the NF-kappaB transcription factor in a T-lymphocytic cell line by hypochlorous acid. Biochem J. 1997;321:777–85. https://doi.org/10.1042/bj3210777 .
doi: 10.1042/bj3210777
pubmed: 9032466
pmcid: 1218135
Wentworth P Jr, McDunn JE, Wentworth AD, Takeuchi C, Nieva J, Jones T, Bautista C, Ruedi JM, Gutierrez A, Janda KD, Babior BM, Eschenmoser A, Lerner RA. Evidence for antibody-catalyzed ozone formation in bacterial killing and inflammation. Science. 2002;298:2195–9. https://doi.org/10.1126/science.1077642 .
doi: 10.1126/science.1077642
pubmed: 12434011
Zhu X, Wentworth P Jr, Wentworth AD, Eschenmoser A, Lerner RA, Wilson IA. Probing the antibody-catalyzed water-oxidation pathway at atomic resolution. Proc Natl Acad Sci U S A. 2004;101:2247–52. https://doi.org/10.1073/pnas.0307311101 .
doi: 10.1073/pnas.0307311101
pubmed: 14982995
pmcid: 356936
Lerner RA, Eschenmoser A. Ozone in biology. Proc Natl Acad Sci U S A. 2003;100:3013–5. https://doi.org/10.1073/pnas.0730791100 .
doi: 10.1073/pnas.0730791100
pubmed: 12631693
pmcid: 152232
Bocci V. Ozone as a bioregulator: pharmacology and toxicology of ozonetherapy today. J Biol Regul Homeost Agents. 1996;10:31–53.
pubmed: 9250885
Agarwal A, Allamaneni SS. Role of free radicals in female reproductive diseases and assisted reproduction. Reprod Biomed Online. 2004;9:338–47. https://doi.org/10.1016/s1472-6483(10)62151-7 .
doi: 10.1016/s1472-6483(10)62151-7
pubmed: 15353087
Li W, Young JF, Sun J. NADPH oxidase-generated reactive oxygen species in mature follicles are essential for Drosophila ovulation. Proc Natl Acad Sci U S A. 2018;115:7765–70. https://doi.org/10.1073/pnas.1800115115 .
doi: 10.1073/pnas.1800115115
pubmed: 29987037
pmcid: 6065002
Kampfer C, Saller S, Windschuttl S, Berg D, Berg U, Mayerhofer A. Pigment-epithelium derived factor (PEDF) and the human ovary: a role in the generation of ROS in granulosa cells. Life Sci. 2014;97:129–36. https://doi.org/10.1016/j.lfs.2013.12.007 .
doi: 10.1016/j.lfs.2013.12.007
pubmed: 24361362
Fujii J, Iuchi Y, Okada F. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system. Reprod Biol Endocrinol. 2005;3:43. https://doi.org/10.1186/1477-7827-3-43 .
doi: 10.1186/1477-7827-3-43
pubmed: 16137335
pmcid: 1224869
Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol. 2012;10:49. https://doi.org/10.1186/1477-7827-10-49 .
doi: 10.1186/1477-7827-10-49
pubmed: 22748101
pmcid: 3527168
Ruder EH, Hartman TJ, Goldman MB. Impact of oxidative stress on female fertility. Curr Opin Obstet Gynecol. 2009;21:219. https://doi.org/10.1097/gco.0b013e32832924ba .
doi: 10.1097/gco.0b013e32832924ba
pubmed: 19469044
pmcid: 2749720
Behrman HR, Kodaman PH, Preston SL, Gao S. Oxidative stress and the ovary. J Soc Gynecol Investig. 2001;8:S40–2. https://doi.org/10.1016/s1071-5576(00)00106-4 .
doi: 10.1016/s1071-5576(00)00106-4
pubmed: 11223371
Freitas C, Neto AC, Matos L, Silva E, Ribeiro A, Silva-Carvalho J, Almeida H. Follicular fluid redox involvement for ovarian follicle growth. J Ovarian Res. 2017;10:44.
doi: 10.1186/s13048-017-0342-3
Luddi A, Governini L, Capaldo A, Campanella G, De Leo V, Piomboni P, Morgante G. Characterization of the age-dependent changes in antioxidant defences and protein’s sulfhydryl/carbonyl stress in human follicular fluid. Antioxidants. 2020;9:927. https://doi.org/10.3390/antiox9100927 .
doi: 10.3390/antiox9100927
pmcid: 7599528
Nelson SM, Telfer EE, Anderson RA. The ageing ovary and uterus: new biological insights. Hum Reprod Update. 2013;19:67–83. https://doi.org/10.1093/humupd/dms043 .
doi: 10.1093/humupd/dms043
pubmed: 23103636
Roselli M, Dubey RK, Imthurn B, Macas E, Keller PJ. Effects of nitric oxide on human spermatozoa: evidence that nitric oxide decreases sperm motility and induces sperm toxicity. Hum Reprod. 1995;10:1786–90. https://doi.org/10.1093/oxfordjournals.humrep.a136174 .
doi: 10.1093/oxfordjournals.humrep.a136174
El Mouatassim S, Guerin P, Menezo Y. Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation. Mol Hum Reprod. 1999;5:720–5. https://doi.org/10.1093/molehr/5.8.720 .
doi: 10.1093/molehr/5.8.720
pubmed: 10421798
Ekerhovd E, Norstrom A. Involvement of a nitric oxide-cyclic guanosine monophosphate pathway in control of fallopian tube contractility. Gynecol Endocrinol. 2004;19:239–46. https://doi.org/10.1080/09513590400019296 .
doi: 10.1080/09513590400019296
pubmed: 15726911
Al-Azemi M, Refaat B, Amer S, Ola B, Chapman N, Ledger W. The expression of inducible nitric oxide synthase in the human fallopian tube during the menstrual cycle and in ectopic pregnancy. Fertil Steril. 2010;94:833–40. https://doi.org/10.1016/j.fertnstert.2009.04.020 .
doi: 10.1016/j.fertnstert.2009.04.020
pubmed: 19482272
Shao R, Zhang SX, Weijdegard B, Shein Z, Egecioglu E, Norstrom A, Brannstrom M, Billig H. Nitric oxide synthases and tubal ectopic pregnancies induced by Chlamydia infection: basic and clinical insights. Mol Hum Reprod. 2010;16:907–15.
doi: 10.1093/molehr/gaq063
Griffith OW, Stuehr DJ. Nitric oxide synthases: properties and catalytic mechanisms. Annu Rev Physiol. 1995;57:707–36. https://doi.org/10.1146/annurev.ph.57.030195.003423 .
doi: 10.1146/annurev.ph.57.030195.003423
pubmed: 7539994
Morris SM Jr, Billiar TR. New insights into the regulation of inducible nitric oxide synthesis. Am J Phys. 1994;266:E829–39. https://doi.org/10.1152/ajpendo.1994.266.6.E829 .
doi: 10.1152/ajpendo.1994.266.6.E829
Tranguch S, Huet-Hudson Y. Decreased viability of nitric oxide synthase double knockout mice. Mol Reprod Dev. 2003;65:175–9. https://doi.org/10.1002/mrd.10274 .
doi: 10.1002/mrd.10274
pubmed: 12704728
Zhan X, Li D, Johns RA. Expression of endothelial nitric oxide synthase in ciliated epithelia of rats. J Histochem Cytochem. 2003;51:81–7. https://doi.org/10.1177/002215540305100110 .
doi: 10.1177/002215540305100110
pubmed: 12502757
Kalra A, Wehrle CJ, Tuma F. Anatomy, abdomen and pelvis, peritoneum. In: StatPearls. StatPearls Publishing; 2020.
Hoare BS, Khan YS. Anatomy, Abdomen and pelvis, female internal genitals. In: StatPearls. StatPearls Publishing; 2020.
Van Langerdonckt A, Casanas-Roux F, Donnez J. Oxidative stress and peritoneal endometriosis. Fertil Steril. 2002;77:861–70. https://doi.org/10.1016/s0015-0282(02)02959-x .
doi: 10.1016/s0015-0282(02)02959-x
Das S, Chattopadhyay R, Ghosh S, Ghosh S, Goswami SK, Chakravarty BN, Chaudhury K. Reactive oxygen species level in follicular fluid: embryo quality marker in IVF? Hum Reprod. 2006;21:2403–7. https://doi.org/10.1093/humrep/del156 .
doi: 10.1093/humrep/del156
pubmed: 16861701
Donnez J, Binda MM, Donnez O, Dolmans M-M. Oxidative stress in the pelvic cavity and its role in the pathogenesis of endometriosis. Fertil Steril. 2016;106:1011–7. https://doi.org/10.1016/j.fertnstert.2016.07.1075 .
doi: 10.1016/j.fertnstert.2016.07.1075
pubmed: 27521769
Agarwal A, Durairajanayagam D, du Plessis SS. Utility of antioxidants during assisted reproductive techniques: an evidence-based review. Reprod Biol Endocrinol. 2014;12:112. https://doi.org/10.1186/1477-7827-12-112 .
doi: 10.1186/1477-7827-12-112
pubmed: 25421286
pmcid: 4258799
DeCherney A, Hill MJ. The future of imaging and assisted reproduction. In: Rizk B, editor. Ultrasonography in reproductive medicine and infertility. Cambridge University Press; 2010. p. 1–10.
Rizk B, Badr M, Talerico C. Oxidative stress and the endometrium. In: Agarwal A, Aziz N, Rizk B, editors. Studies on women’s health. Springer; 2013. p. 61–74. https://doi.org/10.1007/978-1-62703-041-0_3 .
doi: 10.1007/978-1-62703-041-0_3
Ngo C, Chereaau C, Nicco C, Weill B, Chapron C, Batteux F. Reactive oxygen species controls endometriosis progression. Am J Pathol. 2009;175:225–34. https://doi.org/10.2353/ajpath.2009.080804 .
doi: 10.2353/ajpath.2009.080804
pubmed: 19498006
pmcid: 2708809
Sikka SC. Relative impact of oxidative stress on male reproductive function. Curr Med Chem. 2001;8:851–62. https://doi.org/10.2174/0929867013373039 .
doi: 10.2174/0929867013373039
pubmed: 11375755
Chen S-J, Allam J-P, Duan Y-G, Haidi G. Influence of reactive oxygen species on human sperm functions and fertilizing capacity including therapeutical approaches. Arch Gynecol Obstet. 2013;288:191–9. https://doi.org/10.1007/s00404-013-2801-4 .
doi: 10.1007/s00404-013-2801-4
pubmed: 23543240
Haber F, Weiss J. Uber die katalyse des hydroperoxydes. Naturwissenschaften. 1932;20:948–50.
doi: 10.1007/BF01504715
Sen CK. Antioxidants and redox regulation of cellular signalling: introduction. Med Sci Sports Exerc. 2001;33:368–70. https://doi.org/10.1097/00005768-200103000-00005 .
doi: 10.1097/00005768-200103000-00005
pubmed: 11252060
Henkel RR. Leukocytes and oxidative stress: dilemma for sperm function and male fertility. Asian J Androl. 2011;13:43–52. https://doi.org/10.1038/aja.2010.76 .
doi: 10.1038/aja.2010.76
pubmed: 21076433
Agarwal A, Virk G, Ong C, du Plessis SS. Effect of oxidative stress on male reproduction. World J Mens Health. 2014;32:1–17. https://doi.org/10.5534/wjmh.2014.32.1.1 .
doi: 10.5534/wjmh.2014.32.1.1
pubmed: 24872947
pmcid: 4026229
Sabeur K, Ball BA. Characterization of NADPH oxidase 5 in equine testis and spermatozoa. Reproduction. 2007;134:263–70. https://doi.org/10.1530/REP-06-0120 .
doi: 10.1530/REP-06-0120
pubmed: 17660236
Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552:335–44. https://doi.org/10.1113/jphysiol.2003.049478 .
doi: 10.1113/jphysiol.2003.049478
pubmed: 14561818
pmcid: 2343396
Attaran M, Pasqualotto E, Falcone T, Goldberg JM, Miller KF, Agarwal A, Sharma RK. The effect of follicular fluid reactive oxygen species on the outcome of in vitro fertilization. Int J Fertil Womens Med. 2000;45:314–20.
pubmed: 11092702
Gharagozloo P, Aitken RJ. The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum Reprod. 2011;26:1628–40. https://doi.org/10.1093/humrep/der132 .
doi: 10.1093/humrep/der132
pubmed: 21546386
Agarwal A, Roychoudhury S, Bjugstad KB, Cho C-L. Oxidation-reduction potential of semen: what is its role in the treatment of male infertility? Ther Adv Urol. 2016;8:302–18. https://doi.org/10.1177/1756287216652779 .
doi: 10.1177/1756287216652779
pubmed: 27695529
pmcid: 5004233
Saleh RA, Agarwal A, Nada EA, El-Tonsy MH, Sharma RK, Meyer A, Nelson DR, Thomas AJ. Negative effects of increased sperm DNA damages in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril. 2003;79:1597–605. https://doi.org/10.1016/s0015-0282(03)00337-6 .
doi: 10.1016/s0015-0282(03)00337-6
pubmed: 12801566
Gil-Guzman E, Ollero M, Lopez MC, Shamra RK, Alvarez JG, Thomas AJ Jr, Agarwal A. Differential production of reactive oxygen species by subsets of human spermatozoa at different stages of maturation. Hum Reprod. 2001;16:1922–30. https://doi.org/10.1093/humrep/16.9.1922 .
doi: 10.1093/humrep/16.9.1922
pubmed: 11527899
Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79:829–43. https://doi.org/10.1016/s0015-0282(02)04948-8 .
doi: 10.1016/s0015-0282(02)04948-8
pubmed: 12749418
Lavranos G, Balla M, Tzortzopoulou A, Syriou V, Angelopoulou R. Investigating ROS sources in male infertility: a common end for numerous pathways. Reprod Toxicol. 2012;34:298–307. https://doi.org/10.1016/j.reprotox.2012.06.007 .
doi: 10.1016/j.reprotox.2012.06.007
pubmed: 22749934
Shang Y, Liu C, Cui D, Han G, Yi S. The effect of chronic bacterial prostatitis on semen quality in adult men: a meta-analysis of case-control studies. Sci Rep. 2014;4:7233. https://doi.org/10.1038/srep07233 .
doi: 10.1038/srep07233
pubmed: 25429735
pmcid: 4246207
Lu J-C, Huang Y-F, Lu N-Q. WHO laboratory manual for the examination and processing of human semen: its applicability to andrology laboratories in China. Zhonghua Nan Ke Xue. 2010;16:867–71.
pubmed: 21243747
Rengan AK, Agarwal A, van der Linde M, du Plessis SS. An investigation of excess residual cytoplasm in human spermatozoa and its distinction from the cytoplasmic droplet. Reprod Biol Endocrinol. 2012;10:92. https://doi.org/10.1186/1477-7827-10-92 .
doi: 10.1186/1477-7827-10-92
pubmed: 23159014
pmcid: 3551780
Aziz N, Saleh RA, Sharma RK, Lewis-Jones I, Esfandiari N, Thomas AJ Jr, Agarwal A. Novel association between sperm reactive oxygen species production, sperm morphological defects and the sperm deformity index. Fertil Steril. 2004;81:349–54. https://doi.org/10.1016/j.fertnstert.2003.06.026 .
doi: 10.1016/j.fertnstert.2003.06.026
pubmed: 14967372
Will MA, Swain J, Fode M, Sonksen J, Christman GM, Ohl D. The great debate: varicocele treatment and impact on fertility. Fertil Steril. 2011;95:841–52. https://doi.org/10.1016/j.fertnstert.2011.01.002 .
doi: 10.1016/j.fertnstert.2011.01.002
pubmed: 21272869
pmcid: 3046876
Cho C-L, Esteves SC, Agarwal A. Novel insighst into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl. 2016;18:186–93. https://doi.org/10.4103/1008-682X.170441 .
doi: 10.4103/1008-682X.170441
pubmed: 26732105
Shiraishi K, Matsuyama H, Takihara H. Pathophysiology of varicocele in male infertility in the era of assisted reproductive technology. Int J Urol. 2012;19:538–50. https://doi.org/10.1111/j.1442-2042.2012.02982.x .
doi: 10.1111/j.1442-2042.2012.02982.x
pubmed: 22417329
Voglmayr JK, Setchell BP, White IG. The effects of heat on the metabolism and ultrastructure of ram testicular spermatozoa. J Reprod Fertil. 1971;24:71–80. https://doi.org/10.1530/jrf.0.0240071 .
doi: 10.1530/jrf.0.0240071
pubmed: 5539114
Morgan D, Cherny VV, Murphy R, Xu W, Thomas LL, DeCoursey TE. Temperature dependence of NADPH oxidase in human eosinophils. J Physiol. 2003;550:447–58. https://doi.org/10.1113/jphysiol.2003.041525 .
doi: 10.1113/jphysiol.2003.041525
pubmed: 12754316
pmcid: 2343059
Sakamoto Y, Ishikawa T, Kondo Y, Yamaguchi K, Fujisawa M. The assessment of oxidative stress in infertile patients with varicocele. BJU Int. 2008;101:1547–52. https://doi.org/10.1111/j.1464-410X.2008.07517.x .
doi: 10.1111/j.1464-410X.2008.07517.x
pubmed: 18294306
Mostafa T, Anis T, Imam H, El-Nashar AR, Osman IA. Seminal reaxctive oxygen species-antioxidant relationship in fertile males with and without varicocele. Andrologia. 2009;41:125–9. https://doi.org/10.1111/j.1439-0272.2008.00900.x .
doi: 10.1111/j.1439-0272.2008.00900.x
pubmed: 19260850
Monniaux D, Cadoret V, Clement F, Dalbies-Tran R, Elis S, Fabre S, Maillard V, Monget P, Uzbekova S. Folliculogenesis. In: Huhtaniemi I, Martini L, editors. Encyclopedia of endocrine diseases, vol. 2. 2nd ed; 2018. p. 377–98.
Tropea A, Miceli F, Minici F, Tiberi F, Orlando M, Gangale MF, Romani F, Catino S, Mancuso S, Navarra P, Lanzone A, Apa R. Regulation of vascular endothelial growth factor synthesis and release by human luteal cells in vitro. J Clin Endocrinol Metab. 2006;91:2303–9. https://doi.org/10.1210/jc.2005-2457 .
doi: 10.1210/jc.2005-2457
pubmed: 16595603
Basini G, Grasselli F, Bianco F, Tirelli M, Tamanini C. Effects of reduced oxygen tension on reactive oxygen species production and activity of antioxidant enzymes in swine granulosa cells. Biofactors. 2004;20:61–9. https://doi.org/10.1002/biof.5520200201 .
doi: 10.1002/biof.5520200201
pubmed: 15322330
Laloraya M, Pradeep KG, Laloraya MM. Changes in the levels of superoxide anion radical and superoxide dismutase during the estrous cycle of Rattus norvegicus and induction of superoxide dismutase in rat ovary by lutropin. Biochem Biophys Res Commun. 1988;157:146–53. https://doi.org/10.1016/s0006-291x(88)80025-1 .
doi: 10.1016/s0006-291x(88)80025-1
pubmed: 2848516
Devine PJ, Perreault SD, Luderer U. Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biol Reprod. 2012;86:27. https://doi.org/10.1095/biolreprod.111.095224 .
doi: 10.1095/biolreprod.111.095224
pubmed: 22034525
Yu YS, Sui HS, Han ZB, Li W, Luo MJ, Tan JH. Apoptosis in granulosa cells during follicular atresia: relationship with steroids and insulin-like growth factors. Cell Res. 2004;14:341–6. https://doi.org/10.1038/sj.cr.7290234 .
doi: 10.1038/sj.cr.7290234
pubmed: 15353131
Kaipia A, Hsueh AJ. Regulation of ovarian follicle atresia. Annu Rev Physiol. 1997;59:349–63. https://doi.org/10.1146/annurev.physiol.59.1.349 .
doi: 10.1146/annurev.physiol.59.1.349
pubmed: 9074768
Sugino N. Reactive oxygen species in ovarian physiology. Reprod Med Biol. 2005;4:31–44. https://doi.org/10.1007/BF03016135 .
doi: 10.1007/BF03016135
pubmed: 29699208
pmcid: 5904601
Forman HJ, Torres M. Reactive oxygen species and cell signalling: respiratory burst in macrophage signalling. Am J Respir Crit Care Med. 2002;166:S4–8. https://doi.org/10.1164/rccm.2206007 .
doi: 10.1164/rccm.2206007
pubmed: 12471082
Rizzo A, Roscino MT, Binetti F, Sciorsci RL. Roles of reactive oxygen species in female reproduction. Reprod Domest Anim. 2012;47:344–52. https://doi.org/10.1111/j.1439-0531.2011.01891.x .
doi: 10.1111/j.1439-0531.2011.01891.x
pubmed: 22022825
Ishikawa Y, Hirai K, Ogawa K. Cytochemical localization of hydrogen peroxide production in the rat uterus. J Histochem Cytochem. 1984;32:674–6. https://doi.org/10.1177/32.6.6725936 .
doi: 10.1177/32.6.6725936
pubmed: 6725936
Hemler ME, Cook HW, Lands WE. Prostaglandin biosynthesis can be triggered by lipid peroxidase. Arch Biochem Biophys. 1979;193:340–5. https://doi.org/10.1016/0003-9861(79)90038-9 .
doi: 10.1016/0003-9861(79)90038-9
pubmed: 111619
Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ 2nd. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci U S A. 1990;87:9383–7. https://doi.org/10.1073/pnas.87.23.9383 .
doi: 10.1073/pnas.87.23.9383
pubmed: 2123555
pmcid: 55169
Riley JC, Behrman HR. Oxygen radicals and reactive oxygen species in reproduction. Proc Soc Exp Biol Med. 1991;198:781–91. https://doi.org/10.3181/00379727-198-43321c .
doi: 10.3181/00379727-198-43321c
pubmed: 1946472
Russel DL, Robker RL. Molecular mechanism of ovulation: co-ordination through the cumulus complex. Hum Reprod Update. 2007;13:289–312. https://doi.org/10.1093/humupd/dml062 .
doi: 10.1093/humupd/dml062
Richards JS, Russell DL, Ochsner S, Espey LL. Ovulation: new dimensions and new regulators of the inflammatory-like response. Annu Rev Physiol. 2002;64:69–92. https://doi.org/10.1146/annurev.physiol.64.081501.131029 .
doi: 10.1146/annurev.physiol.64.081501.131029
pubmed: 11826264
Shkolnik K, Tadmor A, Ben-Dor S, Nevo N, Galiani D, Dekel N. Reactive oxygen species are indispensable in ovulation. Proc Natl Acad Sci U S A. 2011;108:1462–7. https://doi.org/10.1073/pnas.1017213108 .
doi: 10.1073/pnas.1017213108
pubmed: 21220312
pmcid: 3029775
Brannstrom M, Mayrhofer G, Robertson SA. Localization of leukocyte subsets in the rat ovary during the pre-ovulatory period. Biol Reprod. 1993;48:277–86. https://doi.org/10.1095/biolreprod48.2.277 .
doi: 10.1095/biolreprod48.2.277
pubmed: 8439617
Van der Hoek KH, Maddocks S, Woodhouse CM, van Rooijen N, Robertson SA, Norman RJ. Intrabursal injection of clodronate liposomes cause macrophage depletion and inhibits ovulation in the mouse ovary. Biol Reprod. 2000;62:1059–66. https://doi.org/10.1095/biolreprod62.4.1059 .
doi: 10.1095/biolreprod62.4.1059
pubmed: 10727278
DeYulia GJ Jr, Carcamo JM. EFG receptor-ligand interaction generates extracellular hydrogen peroxide that inhibits EGFR-associated protein tyrosine phosphatases. Biochem Biophys Res Commun. 2005;334:38–42. https://doi.org/10.1016/j.bbrc.2005.06.056 .
doi: 10.1016/j.bbrc.2005.06.056
pubmed: 15982634
Hsieh M, Lee D, Panigone S, Horner K, Chen R, Theologis A, Lee DC, Threadgill DW, Conti M. Luteinizing hormone-dependent activation of the epidermal growth factor network is essential for ovulation. Mol Cell Biol. 2007;27:1914–24. https://doi.org/10.1128/MCB.01919-06 .
doi: 10.1128/MCB.01919-06
pubmed: 17194751
Miyazaki T, Sueoka K, Dharmarajan AM, Atlas SJ, Bulkley GB, Wallach EE. Effect of inhibition of oxygen free radical on ovulation and progesterone production by the in-vitro perfused rabbit ovary. J Reprod Fertil. 1991;91:207–12. https://doi.org/10.1530/jrf.0.0910207 .
doi: 10.1530/jrf.0.0910207
pubmed: 1995849
Chen L, Russell PT, Larsen WJ. Functional significance of cumulus expansion in the mouse: roles for the preovulatory synthesis of hyaluronic acid within the cumulus mass. Mol Reprod Dev. 1993;34:87–93. https://doi.org/10.1002/mrd.1080340114 .
doi: 10.1002/mrd.1080340114
pubmed: 8418823
Kodaman PH, Behrman HR. Endocrine-regulated and protein kinase C-dependent generation of superoxide by rat preovulatory follicles. Endocrinology. 2001;142:687–93. https://doi.org/10.1210/endo.142.2.7961 .
doi: 10.1210/endo.142.2.7961
pubmed: 11159840
de Lamirande E, Gagnon C. Reactive oxygen species (ROS) and reproduction. In: Armstrong D, editor. Free radicals in diagnostic medicine. Springer; 1994. p. 185–97. https://doi.org/10.1007/978-1-4615-1833-4_14 .
doi: 10.1007/978-1-4615-1833-4_14
Al-Gubory KH, Garrel C, Faure P, Sugino N. Roles of antioxidant enzymes in corpus luteum rescue from reactive oxygen species-induced oxidative stress. Reprod Biomed Online. 2012;25:551–60. https://doi.org/10.1016/j.rbmo.2012.08.004 .
doi: 10.1016/j.rbmo.2012.08.004
pubmed: 23063822
Sawada M, Carlson JC. Studies on the mechanism controlling generation of superoxide radical in luteinized rat ovaries during regression. Endocrinology. 1994;135:1645–50. https://doi.org/10.1210/endo.135.4.7925128 .
doi: 10.1210/endo.135.4.7925128
pubmed: 7925128
Tanaka M, Miyazaki T, Tanigaki S, Kasai K, Minegishi K, Miyakoshi K, Ishimoto H, Yoshimura Y. Participation of reactive oxygen species in PGF2alpha-induced apoptosis in rat luteal cells. J Reprod Fertil. 2000;120:239–45. https://doi.org/10.1530/jrf.0.1200239 .
doi: 10.1530/jrf.0.1200239
pubmed: 11058439
Noda Y, Ota K, Shirasawa T, Shimizu T. Copper/zinc superoxide dismutase insufficiency impairs progesterone secretion and fertility in female mice. Biol Reprod. 2012;86:1–8. https://doi.org/10.1095/biolreprod.111.092999 .
doi: 10.1095/biolreprod.111.092999
pubmed: 21900685
Shimamura K, Sugino N, Yoshida Y, Nakamura Y, Ogino K, Kato H. Changes in lipid peroxide and antioxidant enzyme activities in corpora lutea during pseudopregnancy in rats. J Reprod Fertil. 1995;105:253–7. https://doi.org/10.1530/jrf.0.1050253 .
doi: 10.1530/jrf.0.1050253
pubmed: 8568768
Sawada M, Carlson JC. Superoxide radical production in plasma membrane samples from regressing rat corpora lutea. Can J Physiol Pharmacol. 1989;67:465–71. https://doi.org/10.1139/y89-074 .
doi: 10.1139/y89-074
pubmed: 2548692
Behrman HR, Preston SL. Luteolytic actions of peroxide in rat ovarian cells. Endocrinology. 1989;124:2895–900. https://doi.org/10.1210/endo-124-6-2895 .
doi: 10.1210/endo-124-6-2895
pubmed: 2470582
Behrman HR, Alten RF. Evidence that hydrogen peroxide blocks hormone-sensitive cholesterol transport into mitochondria of rat luteal cells. Endocrinology. 1991;128:2958–66. https://doi.org/10.1210/endo-128-6-2958 .
doi: 10.1210/endo-128-6-2958
pubmed: 2036971
Gagioti S, Colepicolo P, Bevilacqua E. Post-implantation mouse embryos have the capability to generate and release reactive oxygen species. Reprod Fertil Dev. 1995;7:1111–6. https://doi.org/10.1071/rd9951111 .
doi: 10.1071/rd9951111
pubmed: 8848578
Nasr-Esfahani MH, Winston NJ, Johnson MH. Effect of glucose, glutamine, ethylenediaminetetraacetic acid and oxygen tension on the concentration of reactive oxygen species and on development of the mouse preimplantation embryo in vitro. J Reprod Fertil. 1992;96:219–31. https://doi.org/10.1530/jrf.0.0960219 .
doi: 10.1530/jrf.0.0960219
pubmed: 1432953
Yamashita T, Yamazaki H, Kon Y, Watanabe T, Arikawa J, Miyoshi I, Kasai N, Kuwabara M. Progressive effect of alpha-phenyl-N-tert-butyl nitrone (PBN) on rat embryo development in vitro. Free Radic Biol Med. 1997;23:1073–7. https://doi.org/10.1016/s0891-5849(97)00139-1 .
doi: 10.1016/s0891-5849(97)00139-1
pubmed: 9358251
Guerin P, El Mouatassim S, Menezo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update. 2001;7:175–89. https://doi.org/10.1093/humupd/7.2.175 .
doi: 10.1093/humupd/7.2.175
pubmed: 11284661
Mannaerts D, Faes E, Cos P, Briede JJ, Gyselaers W, Cornette J, Gorbanev Y, Bogaerts A, Spaanderman M, Van Craenenbroek E, Jacquemyn Y. Oxidative stress in healthy pregnancy and preeclampsia in linked to chronic inflammation, iron status and vascular function. PLoS One. 2018;13:e0202919. https://doi.org/10.1371/journal.pone.0202919 .
doi: 10.1371/journal.pone.0202919
pubmed: 30204759
pmcid: 6133366
Myatt L, Cui X. Oxidative stress in the placenta. Histochem Cell Biol. 2004;122:369–82. https://doi.org/10.1007/s00418-004-0677-x .
doi: 10.1007/s00418-004-0677-x
pubmed: 15248072
Abrahams VM, Kim YM, Straszewski SL, Romero R, Mor G. Macrophage and apoptotic cell clearance during pregnancy. Am J Reprod Immunol. 2004;51:275–82. https://doi.org/10.1111/j.1600-0897.2004.00156.x .
doi: 10.1111/j.1600-0897.2004.00156.x
pubmed: 15212680
Khalil A, Jauniaux E, Cooper D, Harrington K. Pulse wave analysis in normal pregnancy: a prospective longitudinal study. PLoS One. 2009;4:e6134. https://doi.org/10.1371/journal.pone.0006134 .
doi: 10.1371/journal.pone.0006134
pubmed: 19578538
pmcid: 2700961
Wu F, Tian F-J, Lin Y, Xu W-M. Oxidative stress: placenta function and dysfunction. Am J Reprod Immunol. 2016;76:258–71. https://doi.org/10.1111/aji.12454 .
doi: 10.1111/aji.12454
pubmed: 26589876
Krause BJ, Hanson MA, Casanello P. Role of nitric oxide in placental vascular development and function. Placenta. 2011;32:797–805. https://doi.org/10.1016/j.placenta.2011.06.025 .
doi: 10.1016/j.placenta.2011.06.025
pubmed: 21798594
pmcid: 3218217
Wu F, Tian F-J, Lin Y. Oxidative stress in placenta: health and diseases. Biomed Res Int. 2015;2015:293271. https://doi.org/10.1155/2015/293271 .
doi: 10.1155/2015/293271
pubmed: 26693479
pmcid: 4676991
Liu A-X, Jin F, Zhang W-W, Zhou T-H, Zhou C-Y, Yao W-M, Qian Y-L, Huang H-F. Proteomic analysis on the alteration of protein expression in the placental villous tissue of early pregnancy loss. Biol Reprod. 2006;75:414–20. https://doi.org/10.1095/biolreprod.105.049379 .
doi: 10.1095/biolreprod.105.049379
pubmed: 16738225
Conner EM, Grisham MB. Inflammation, free radicals and antioxidants. Nutrition. 1996;12:274–7. https://doi.org/10.1016/s0899-9007(96)00000-8 .
doi: 10.1016/s0899-9007(96)00000-8
pubmed: 8862535
Jenkin G, Young IR. Mechanism responsible for parturition: the use of experimental models. Anim Reprod Sci. 2004;82–83:567–81. https://doi.org/10.1016/j.anireprosci.2004.05.010 .
doi: 10.1016/j.anireprosci.2004.05.010
pubmed: 15271480
Golightly E, Jabbour HN, Norman JE. Endocrine immune interactions in human parturition. Mol Cell Endocrinol. 2011;335:52–9. https://doi.org/10.1016/j.mce.2010.08.005 .
doi: 10.1016/j.mce.2010.08.005
pubmed: 20708653
Masumoto N, Tasaka K, Miyake A, Tanizawa O. Superoxide anion increases intracellular free calcium in human myometrial cells. J Biol Chem. 1990;265:22533–6.
doi: 10.1016/S0021-9258(18)45738-9
Appiah I, Milovanovic S, Radojicic R, Nikolic-Kokic A, Orescanin-Dusic Z, Slavic M, Trbojevic S, Skrbic R, Spasic M, Blagojevic D. Hydrogen peroxide affects contractile activity and antioxidant enzymes in rat uterus. Br J Pharmacol. 2009;158:1932–41. https://doi.org/10.1111/j.1476-5381.2009.00490.x .
doi: 10.1111/j.1476-5381.2009.00490.x
pubmed: 19917063
pmcid: 2807655
O’Donovan DJ, Fernandes CJ. Free radicals and diseases in premature infants. Antioxid Redox Signal. 2004;6:169–76. https://doi.org/10.1089/152308604771978471 .
doi: 10.1089/152308604771978471
pubmed: 14713348
Kovalski N, de Lamirande E, Gagnon C. Reactive oxygen species generated by human neutrophils inhibit sperm motility: protective effect of seminal plasma and scavengers. Fertil Steril. 1992;58:809–16. https://doi.org/10.1016/S0015-0282(16)55332-1 .
doi: 10.1016/S0015-0282(16)55332-1
pubmed: 1426329
Guerriero G, Trocchia S, Abdel-Gawad FK, Ciarcia G. Roles of reactive oxygen species in the spermatogenesis regulation. Front Endocrinol (Lausanne). 2014;5:56. https://doi.org/10.3389/fendo.2014.00056 .
doi: 10.3389/fendo.2014.00056
Shi Y, Buffenstein R, Pulliam DA, Van Remmen H. Comparative study of oxidative stress and mitochondrial function in aging. Integr Comp Biol. 2010;50:869–79. https://doi.org/10.1093/icb/icq079 .
doi: 10.1093/icb/icq079
pubmed: 21558246
Fujii J, Imai H. Redox reactions in mammalian spermatogenesis and the potential targets of reactive oxygen species under oxidative stress. Spermatogenesis. 2014;4:e979108. https://doi.org/10.4161/21565562.2014.979108 .
doi: 10.4161/21565562.2014.979108
pubmed: 26413390
pmcid: 4581049
Lui W-Y, Cheng CY. Transcription regulation in spermatogenesis. Adv Exp Med Biol. 2008;636:115–32. https://doi.org/10.1007/978-0-387-09597-4_7 .
doi: 10.1007/978-0-387-09597-4_7
pubmed: 19856165
Chen C, Ouyang W, Grigura V, Zhou Q, Carnes K, Lim H, Zhao G-Q, Arber S, Kurpios N, Murphy TL, Cheng AM, Hassell JA, Chandrashekar V, Hofmann M-C, Hess RA, Murphy KM. ERM is required for transcriptional control of the spermatogonial stem cell niche. Nature. 2005;436:1030–4. https://doi.org/10.1038/nature03894 .
doi: 10.1038/nature03894
pubmed: 16107850
pmcid: 2909764
Grimes SR. Testis-specific transcriptional control. Gene. 2004;343:11–22. https://doi.org/10.1016/j.gene.2004.08.021 .
doi: 10.1016/j.gene.2004.08.021
pubmed: 15563828
Aitken RJ, Roman SD. Antioxidant system and oxidative stress in the stress. Oxidative Med Cell Longev. 2008;1:15–24. https://doi.org/10.4161/oxim.1.1.6843 .
doi: 10.4161/oxim.1.1.6843
Montano MM, Deng H, Liu M, Sun X, Singal R. Transcriptional regulation by the estrogen receptor of antioxidative stress enzymes and its functional implications. Oncogene. 2004;23:2442–53. https://doi.org/10.1038/sj.onc.1207358 .
doi: 10.1038/sj.onc.1207358
pubmed: 14676828
Aitken RJ, Gordon E, Harkiss D, Twigg JP, Milne P, Jennings Z, Irvine DS. Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol Reprod. 1998;59:1037–46. https://doi.org/10.1095/biolreprod59.5.1037 .
doi: 10.1095/biolreprod59.5.1037
pubmed: 9780307
Saowaros W, Panyim S. The formation of disulphide bonds in human protamines during sperm maturation. Experientia. 1979;35:191–2. https://doi.org/10.1007/BF01920608 .
doi: 10.1007/BF01920608
pubmed: 421827
Cheng W-M, An L, Wu Z-H, Zhu Y-B, Liu J-H, Gao H-M, Li X-H, Zheng S-J, Chen D-B, Tian J-H. Effects of disulphide bond reducing agents on sperm chromatin structural integrity and developmental competence of in vitro matured oocytes after intracytoplasmic sperm injection in pigs. Reproduction. 2009;137:633–43. https://doi.org/10.1530/REP-08-0143 .
doi: 10.1530/REP-08-0143
pubmed: 19155332
Hutchinson JM, Rau DC, DeRouchey JE. Role of disulphide bonds on DNA packaging forces in bull sperm chromatin. Biophys J. 2017;113:1925–33. https://doi.org/10.1016/j.bpj.2017.08.050 .
doi: 10.1016/j.bpj.2017.08.050
Rousseaux J, Rousseaux-Prevost R. Molecular localization of free thiols in human sperm chromatin. Biol Reprod. 1995;52:1066–72. https://doi.org/10.1095/biolreprod52.5.1066 .
doi: 10.1095/biolreprod52.5.1066
pubmed: 7626706
Roveri A, Ursini F, Flohe L, Maiorino M. PHGPx and spermatogenesis. Biofactors. 2001;14:213–22. https://doi.org/10.1002/biof.5520140127 .
doi: 10.1002/biof.5520140127
pubmed: 11568459
Eisenbach M. Mammalian sperm chemotaxis and its association with capacitation. Dev Genet. 1999;25:87–94. https://doi.org/10.1002/(SICI)1520-6408(1999)25:2<87::AID-DVG2>3.0.CO;2-4 .
doi: 10.1002/(SICI)1520-6408(1999)25:2<87::AID-DVG2>3.0.CO;2-4
pubmed: 10440842
Aitken RJ. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol Reprod Dev. 2017;84:1039–52. https://doi.org/10.1002/mrd.22871 .
doi: 10.1002/mrd.22871
pubmed: 28749007
Gualtieri R, Mollo V, Duma G, Talevi R. Redox control of surface protein sulphhydryls in bovine spermatozoa reversibly modulates sperm adhesion to the oviductal epithelium and capacitation. Reproduction. 2009;138:33–43. https://doi.org/10.1530/REP-08-0514 .
doi: 10.1530/REP-08-0514
pubmed: 19439561
O’Flaherty C. Redox regulation of mammalian sperm capacitation. Asian J Urol. 2015;17:583–90. https://doi.org/10.4103/1008-682X.153303 .
doi: 10.4103/1008-682X.153303
Kralikova M, Crha I, Huser M, Melounova J, Zakova J, Matejovicova M, Ventruba P. The intracellular concentration of homocysteine and related thiols is negatively correlated to sperm quality after highly effective method of sperm lysis. Andrologia. 2017;49:e12702. https://doi.org/10.1111/and.12702 .
doi: 10.1111/and.12702
de Lamirande E, Harakat A, Gagnon C. Human sperm capacitation induced by biological fluids and progesterone, but not by NADH or NADPH, is associated with the production of superoxide anion. J Androl. 1998;19:215–25. https://doi.org/10.1002/j.1939-4640.1998.tb01991.x .
doi: 10.1002/j.1939-4640.1998.tb01991.x
pubmed: 9570746
Suarez SS. Control of hyperactivation in sperm. Hum Reprod Update. 2008;14:647–57. https://doi.org/10.1093/humupd/dmn029 .
doi: 10.1093/humupd/dmn029
pubmed: 18653675
de Lamirande E, Jiang H, Zini A, Kodama H, Gagnon C. Reactive oxygen species and sperm physiology. Rev Reprod. 1997;2:48–54. https://doi.org/10.1530/ror.0.0020048 .
doi: 10.1530/ror.0.0020048
pubmed: 9414465
Zini A, de Lamirande E, Gagnon C. Low levels of nitric oxide promote human sperm capacitation in vitro. J Androl. 1995;16:424–31. https://doi.org/10.1002/j.1939-4640.1995.tb00558.x .
doi: 10.1002/j.1939-4640.1995.tb00558.x
pubmed: 8575982
de Lamirande E, Lamothe G. Reactive oxygen-induces reactive oxygen formation during human sperm capacitation. Free Radic Biol Med. 2009;46:502–10. https://doi.org/10.1016/j.freeradbiomed.2008.11.004 .
doi: 10.1016/j.freeradbiomed.2008.11.004
pubmed: 19071212
du Plessis SS, Agarwal A, Halabi J, Tvrda E. Contemporary evidence on the physiological role of reactive oxygen species in human sperm function. J Assist Reprod Genet. 2015;32:509–20. https://doi.org/10.1007/s10815-014-0425-7 .
doi: 10.1007/s10815-014-0425-7
pubmed: 25646893
pmcid: 4380893
Breitbart H, Spungin B. The biochemistry of the acrosome reaction. Mol Hum Reprod. 1997;3:195–202. https://doi.org/10.1093/molehr/3.3.195 .
doi: 10.1093/molehr/3.3.195
pubmed: 9237245
Breitbart H, Naor Z. Protein kinase in mammalian sperm capacitation and the acrosome reaction. Rev Reprod. 1999;4:151–9. https://doi.org/10.1530/ror.0.0040151 .
doi: 10.1530/ror.0.0040151
pubmed: 10521152
Ichikawa T, Oeda T, Ohmori H, Schill WB. Reactive oxygen species influence the acrosome reaction but not acrosin activity in human spermatozoa. Int J Androl. 1999;22:37–42. https://doi.org/10.1046/j.1365-2605.1999.00145.x .
doi: 10.1046/j.1365-2605.1999.00145.x
pubmed: 10068942
de Lamirande E, Gagnon C. A positive role for the superoxide anion in triggering hyperactivation and capacitation of human spermatozoa. Int J Androl. 1993;16:21–5. https://doi.org/10.1111/j.1365-2605.1993.tb01148.x .
doi: 10.1111/j.1365-2605.1993.tb01148.x
pubmed: 8385650
Boerke A, Tsai PS, Garcia-Gill N, Brewis IA, Gadella BM. Capacitation-dependent reorganization of microdomains in the apical sperm head plasma membrane: functional relationship with zona binding and the zona-induced acrosome reaction. Theriogenology. 2008;70:1188–96. https://doi.org/10.1016/j.theriogenology.2008.06.021 .
doi: 10.1016/j.theriogenology.2008.06.021
pubmed: 18640708
de Lamirande E, Tsai C, Harakat A, Gagnon C. Involvement of reactive oxygen species in human sperm acrosome reaction induced by A23187, lysophosphatidylcholine and biological fluid ultrafiltrates. J Androl. 1998;19:585–94. https://doi.org/10.1002/j.1939-4640.1998.tb02061.x .
doi: 10.1002/j.1939-4640.1998.tb02061.x
pubmed: 9796619
Herrero MB, de Lamirande E, Gagnon C. Nitric oxide is a signalling molecule in spermatozoa. Curr Pharm Des. 2003;9:419–25. https://doi.org/10.2174/1381612033391720 .
doi: 10.2174/1381612033391720
pubmed: 12570819
Aitken RJ, Paterson M, Fisher H, Buckingham DW, van Duin M. Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J Cell Sci. 1995;108:2017–25. https://doi.org/10.1242/jcs.108.5.2017 .
doi: 10.1242/jcs.108.5.2017
pubmed: 7544800
Griveau JF, Renard P, Le Lannou D. Superoxide anion production by human spermatozoa as a part of the ionophore-induced acrosome reaction process. Int J Androl. 1995;18:67–74. https://doi.org/10.1111/j.1365-2605.1995.tb00388.x .
doi: 10.1111/j.1365-2605.1995.tb00388.x
pubmed: 7665212
Aitken RJ, Buckingham DW, Harkiss D, Paterson M, Fisher H, Irvine DS. The extragenomic action of progesterone on human spermatozoa is influenced by redox regulated changes in tyrosine phosphorylation during capacitation. Mol Cell Endocrinol. 1996;117:83–93. https://doi.org/10.1016/0303-7207(95)03733-0 .
doi: 10.1016/0303-7207(95)03733-0
pubmed: 8734476
Aitken RJ, Buckingham DW, West KM. Reactive oxygen species and human spermatozoa: analysis of the cellular mechanism involved in luminol- and lucigenin-dependent chemiluminescence. J Cell Physiol. 1992;151:466–77. https://doi.org/10.1002/jcp.1041510305 .
doi: 10.1002/jcp.1041510305
pubmed: 1338331
Ohzu E, Yanagimachi R. Acceleration of acrosome reaction in hamster spermatozoa by lysolecithin. J Exp Zool. 1982;224:259–63. https://doi.org/10.1002/jez.1402240216 .
doi: 10.1002/jez.1402240216
pubmed: 7153725
Goldman R, Ferber E, Zort U. Reactive oxygen species are involved in the activation of cellular phospholipase A2. FEBS Lett. 1992;309:190–2. https://doi.org/10.1016/0014-5793(92)81092-z .
doi: 10.1016/0014-5793(92)81092-z
pubmed: 1505682
Zor U, Ferber E, Gergely P, Szucs K, Dombradi V, Goldman R. Reactive oxygen species mediate phorbol ester-regulated tyrosine phosphorylation and phospholipase A2 activation: potentiation by vanadate. Biochem J. 1993;295:879–88. https://doi.org/10.1042/bj2950879 .
doi: 10.1042/bj2950879
pubmed: 7694572
pmcid: 1134643
Aitken RJ. Molecular mechanisms regulating human sperm function. Mol Hum Reprod. 1997;3:169–73. https://doi.org/10.1093/molehr/3.3.169 .
doi: 10.1093/molehr/3.3.169
pubmed: 9237243
Sanchez R, Sepulveda C, Risopatron J, Villegas J, Giojalas LC. Human sperm chemotaxis depends on critical levels of reactive oxygen species. Fertil Steril. 2010;93:150–3. https://doi.org/10.1016/j.fertnstert.2008.09.049 .
doi: 10.1016/j.fertnstert.2008.09.049
pubmed: 18976761
Sharma R, Roychoudhury S, Alsaad R, Bamajbuor F. Negative effects of oxidative stress (OS) on reproductive system at cellular level. In: Agarwal A, Sharma RK, Gupta S, Harlev A, Ahmad G, du Plessis SS, Esteves SC, Wang SM, Durairajanayagam D, editors. Oxidative stress in human reproduction shedding light on a complicated phenomenon. Springer; 2017. p. 65–88. https://doi.org/10.1007/978-3-319-48427-3_4 .
doi: 10.1007/978-3-319-48427-3_4