Machine learning for non-additive intermolecular potentials: quantum chemistry to first-principles predictions.


Journal

Chemical communications (Cambridge, England)
ISSN: 1364-548X
Titre abrégé: Chem Commun (Camb)
Pays: England
ID NLM: 9610838

Informations de publication

Date de publication:
16 Jun 2022
Historique:
pubmed: 2 6 2022
medline: 2 6 2022
entrez: 1 6 2022
Statut: epublish

Résumé

Prediction of thermophysical properties from molecular principles requires accurate potential energy surfaces (PES). We present a widely-applicable method to produce first-principles PES from quantum chemistry calculations. Our approach accurately interpolates three-body non-additive interaction data, using the machine learning technique, Gaussian Processes (GP). The GP approach needs no bespoke modification when the number or type of molecules is changed. Our method produces highly accurate interpolation from significantly fewer training points than typical approaches, meaning

Identifiants

pubmed: 35642644
doi: 10.1039/d2cc01820a
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6898-6901

Auteurs

Richard S Graham (RS)

School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK. richard.graham@nottingham.ac.uk.

Richard J Wheatley (RJ)

School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK.

Classifications MeSH