Combining Image Restoration and Traction Force Microscopy to Study Extracellular Matrix-Dependent Keratin Filament Network Plasticity.

cytoskeleton extracellular matrix image restoration intermediate filaments keratin traction force microscopy

Journal

Frontiers in cell and developmental biology
ISSN: 2296-634X
Titre abrégé: Front Cell Dev Biol
Pays: Switzerland
ID NLM: 101630250

Informations de publication

Date de publication:
2022
Historique:
received: 21 03 2022
accepted: 12 04 2022
entrez: 1 6 2022
pubmed: 2 6 2022
medline: 2 6 2022
Statut: epublish

Résumé

Keratin intermediate filaments are dynamic cytoskeletal components that are responsible for tuning the mechanical properties of epithelial tissues. Although it is known that keratin filaments (KFs) are able to sense and respond to changes in the physicochemical properties of the local niche, a direct correlation of the dynamic three-dimensional network structure at the single filament level with the microenvironment has not been possible. Using conventional approaches, we find that keratin flow rates are dependent on extracellular matrix (ECM) composition but are unable to resolve KF network organization at the single filament level in relation to force patterns. We therefore developed a novel method that combines a machine learning-based image restoration technique and traction force microscopy to decipher the fine details of KF network properties in living cells grown on defined ECM patterns. Our approach utilizes Content-Aware Image Restoration (CARE) to enhance the temporal resolution of confocal fluorescence microscopy by at least five fold while preserving the spatial resolution required for accurate extraction of KF network structure at the single KF/KF bundle level. The restored images are used to segment the KF network, allowing numerical analyses of its local properties. We show that these tools can be used to study the impact of ECM composition and local mechanical perturbations on KF network properties and corresponding traction force patterns in size-controlled keratinocyte assemblies. We were thus able to detect increased curvature but not length of KFs on laminin-322 versus fibronectin. Photoablation of single cells in microprinted circular quadruplets revealed surprisingly little but still significant changes in KF segment length and curvature that were paralleled by an overall reduction in traction forces without affecting global network orientation in the modified cell groups irrespective of the ECM coating. Single cell analyses furthermore revealed differential responses to the photoablation that were less pronounced on laminin-332 than on fibronectin. The obtained results illustrate the feasibility of combining multiple techniques for multimodal monitoring and thereby provide, for the first time, a direct comparison between the changes in KF network organization at the single filament level and local force distribution in defined paradigms.

Identifiants

pubmed: 35646906
doi: 10.3389/fcell.2022.901038
pii: 901038
pmc: PMC9131083
doi:

Types de publication

Journal Article

Langues

eng

Pagination

901038

Informations de copyright

Copyright © 2022 Yoon, Windoffer, Kozyrina, Piskova, Di Russo and Leube.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Proc IEEE Int Symp Biomed Imaging. 2009 Jun 28;2009:1302-1305
pubmed: 20072703
Cold Spring Harb Perspect Biol. 2018 Apr 2;10(4):
pubmed: 29610398
Biochim Biophys Acta. 2015 Nov;1853(11 Pt B):3053-64
pubmed: 25975455
J Cancer Res Clin Oncol. 2016 Dec;142(12):2479-2487
pubmed: 27601168
Proc IEEE Int Symp Biomed Imaging. 2011 Mar 30;2011:1334-1340
pubmed: 21822463
Sci Rep. 2015 Mar 13;5:9081
pubmed: 25765313
J Invest Dermatol. 2019 Sep;139(9):1876-1888.e4
pubmed: 30951704
Annu Rev Cell Dev Biol. 2018 Oct 6;34:1-28
pubmed: 30059630
Acta Histochem Cytochem. 2010 May 1;43(2):19-31
pubmed: 20514289
Int J Mol Sci. 2021 Feb 21;22(4):
pubmed: 33669958
PLoS One. 2013;8(1):e53532
pubmed: 23341946
J Biol Chem. 2013 Apr 19;288(16):11555-71
pubmed: 23449973
Biophys J. 2008 Jan 1;94(1):207-20
pubmed: 17827246
Cell Mol Life Sci. 2020 Feb;77(3):543-558
pubmed: 31243490
Elife. 2022 Feb 18;11:
pubmed: 35179484
Nat Methods. 2018 Dec;15(12):1090-1097
pubmed: 30478326
Cell Mol Life Sci. 2020 Nov;77(21):4397-4411
pubmed: 31912195
Cancer Sci. 2017 Feb;108(2):178-186
pubmed: 27865045
J Invest Dermatol. 2013 Jan;133(1):181-90
pubmed: 22895363
J Cell Biol. 2011 Sep 5;194(5):669-78
pubmed: 21893596
J Vis Exp. 2010 Dec 14;(46):
pubmed: 21178972
Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10664-9
pubmed: 23757496
Essays Biochem. 2019 Oct 31;63(5):521-533
pubmed: 31652439
J Cell Sci. 2015 Oct 15;128(20):3714-9
pubmed: 26330528
Cold Spring Harb Perspect Biol. 2017 Jun 1;9(6):
pubmed: 28096266
Nat Biotechnol. 2018 Jun;36(5):460-468
pubmed: 29658943
Cells. 2016 Jul 05;5(3):
pubmed: 27399781
Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4708-13
pubmed: 21383129
Sci Rep. 2017 Mar 08;7:43783
pubmed: 28272499
Exp Cell Res. 2007 Jun 10;313(10):2244-54
pubmed: 17524394
PLoS One. 2012;7(6):e38561
pubmed: 22701666
Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18507-12
pubmed: 24167274
Nature. 2018 Nov;563(7730):203-208
pubmed: 30401836
PLoS One. 2012;7(6):e38780
pubmed: 22685604
J Cell Sci. 2012 May 1;125(Pt 9):2148-59
pubmed: 22344252
Curr Opin Cell Biol. 2021 Feb;68:155-162
pubmed: 33246268
Eur J Cell Biol. 2005 Mar;84(2-3):311-28
pubmed: 15819410
Cells. 2021 Jul 27;10(8):
pubmed: 34440673
J Cell Biol. 2022 Feb 9;221(3):
pubmed: 35139142
Curr Opin Cell Biol. 2015 Feb;32:56-64
pubmed: 25594948
Sci Rep. 2020 Mar 12;10(1):4574
pubmed: 32165652
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):86-94
pubmed: 20879218
J Pharmacol Toxicol Methods. 2015 Jan-Feb;71:1-7
pubmed: 25464019
J Cell Biol. 2020 Feb 3;219(2):
pubmed: 31914171
J Cell Sci. 2020 Mar 16;133(6):
pubmed: 32179593
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):673-81
pubmed: 20426170
J Cell Sci. 2017 Oct 15;130(20):3437-3445
pubmed: 29032358
J Cell Sci. 2020 Jul 29;133(14):
pubmed: 32616561
Bioinformatics. 2017 Aug 01;33(15):2424-2426
pubmed: 28369169

Auteurs

Sungjun Yoon (S)

Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.

Reinhard Windoffer (R)

Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.

Aleksandra N Kozyrina (AN)

Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.
Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany.
DWI-Leibniz-Institute for Interactive Materials Forckenbeckstr, Aachen, Germany.

Teodora Piskova (T)

Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.
Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany.
DWI-Leibniz-Institute for Interactive Materials Forckenbeckstr, Aachen, Germany.

Jacopo Di Russo (J)

Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.
Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany.
DWI-Leibniz-Institute for Interactive Materials Forckenbeckstr, Aachen, Germany.

Rudolf E Leube (RE)

Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.

Classifications MeSH