Peel Adhesion Strength between Epoxy Resin and Hydrated Silica Surfaces: A Density Functional Theory Study.
Journal
ACS omega
ISSN: 2470-1343
Titre abrégé: ACS Omega
Pays: United States
ID NLM: 101691658
Informations de publication
Date de publication:
24 May 2022
24 May 2022
Historique:
received:
15
03
2022
accepted:
05
05
2022
entrez:
1
6
2022
pubmed:
2
6
2022
medline:
2
6
2022
Statut:
epublish
Résumé
Adhesive strength is known to change significantly depending on the direction of the force applied. In this study, the peel and tensile adhesive forces between the hydroxylated silica (001) surface and epoxy resin are estimated based on quantum chemical calculations. Here, density functional theory (DFT) with dispersion correction is used. In the peel process, the epoxy resin is pulled off from the terminal part, while in the tensile process, the entire epoxy resin is pulled off vertically. As a result of these calculations, the maximum adhesive force in the peel process is decreased to be about 40% of that in the tensile process. The adhesion force-displacement curve for the peeling process shows two characteristic peaks corresponding to the process where the adhesive molecule horizontally oriented to the surface shifts to a vertical orientation to the surface and the process where the vertical adhesive molecule is dissociated from the surface. Force decomposition analysis is performed to further understand the peel adhesion force; the contribution of the dispersion force is found to be slightly larger than that of the DFT force. This feature is common to the tensile process as well. Each force in the peel process is about 40% smaller than the corresponding force in the tensile process.
Identifiants
pubmed: 35647424
doi: 10.1021/acsomega.2c01544
pmc: PMC9134379
doi:
Types de publication
Journal Article
Langues
eng
Pagination
17393-17400Informations de copyright
© 2022 The Authors. Published by American Chemical Society.
Déclaration de conflit d'intérêts
The authors declare no competing financial interest.
Références
ACS Omega. 2019 Mar 01;4(3):4491-4504
pubmed: 31459644
Langmuir. 2010 Jul 6;26(13):10791-5
pubmed: 20302279
Phys Rev B Condens Matter. 1994 May 15;49(20):14251-14269
pubmed: 10010505
Polymers (Basel). 2019 Oct 27;11(11):
pubmed: 31717858
Adv Colloid Interface Sci. 2015 Mar;217:43-67
pubmed: 25578406
Langmuir. 2013 Jun 11;29(23):6936-43
pubmed: 23683083
J Comput Chem. 2019 Jan 5;40(1):164-171
pubmed: 30306594
Langmuir. 2018 Nov 27;34(47):14428-14438
pubmed: 30388013
Langmuir. 2021 Apr 6;37(13):3982-3995
pubmed: 33751891
Langmuir. 2014 Jun 17;30(23):6906-14
pubmed: 24835420
ACS Omega. 2020 Oct 01;5(40):26211-26219
pubmed: 33073147
Langmuir. 2010 Oct 5;26(19):15248-56
pubmed: 20831284
J Phys Chem B. 2005 Sep 15;109(36):17224-31
pubmed: 16853198
Langmuir. 2021 Jul 20;37(28):8417-8425
pubmed: 34240872
J Comput Chem. 2006 Nov 30;27(15):1787-99
pubmed: 16955487
Phys Rev B Condens Matter. 1993 Jan 1;47(1):558-561
pubmed: 10004490
ACS Omega. 2021 Dec 02;6(49):34173-34184
pubmed: 34926965
Langmuir. 2021 Dec 21;37(50):14724-14732
pubmed: 34870994
Phys Rev Lett. 1996 Oct 28;77(18):3865-3868
pubmed: 10062328
Sci Rep. 2017 Sep 5;7(1):10475
pubmed: 28874757