The Role of ADAM17 in Inflammation-Related Atherosclerosis.
A disintegrin and metalloprotease 17
Atherosclerosis
Inflammation
Vascular biology
Journal
Journal of cardiovascular translational research
ISSN: 1937-5395
Titre abrégé: J Cardiovasc Transl Res
Pays: United States
ID NLM: 101468585
Informations de publication
Date de publication:
12 2022
12 2022
Historique:
received:
19
11
2021
accepted:
06
05
2022
pubmed:
2
6
2022
medline:
16
12
2022
entrez:
1
6
2022
Statut:
ppublish
Résumé
Atherosclerosis is a chronic inflammatory disease that poses a huge economic burden due to its extremely poor prognosis. Therefore, it is necessary to explore potential mechanisms to improve the prevention and treatment of atherosclerosis. A disintegrin and metalloprotease 17 (ADAM17) is a cell membrane-bound protein that performs a range of functions through membrane protein shedding and intracellular signaling. ADAM17-mediated inflammation has been identified to be an important contributor to atherosclerosis; however, the specific relationship between its multiple regulatory roles and the pathogenesis of atherosclerosis remains unclear. Here, we reviewed the activation, function, and regulation of ADAM17, described in detail the role of ADAM17-mediated inflammatory damage in atherosclerosis, and discussed several controversial points. We hope that these insights into ADAM17 biology will lead to rational management of atherosclerosis. ADAM17 promotes vascular inflammation in endothelial cells, smooth muscle cells, and macrophages, and regulates the occurrence and development of atherosclerosis.
Identifiants
pubmed: 35648358
doi: 10.1007/s12265-022-10275-4
pii: 10.1007/s12265-022-10275-4
doi:
Substances chimiques
ADAM17 Protein
EC 3.4.24.86
Membrane Proteins
0
ADAM17 protein, human
EC 3.4.24.86
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1283-1296Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Wei, S., Wang, H., Zhang, G., Lu, Y., An, X., Ren, S., Wang, Y., Chen, Y., White, J. G., Zhang, C., et al. (2013). Platelet IκB kinase-β deficiency increases mouse arterial neointima formation via delayed glycoprotein Ibα shedding. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 241–248. https://doi.org/10.1161/ATVBAHA.112.300781
doi: 10.1161/ATVBAHA.112.300781
Zhang, Y., Wang, Y., Zhou, D., Zhang, L. S., Deng, F. X., Shu, S., Wang, L. J., Wu, Y., Guo, N., Zhou, J., & Yuan, Z. Y. (2019). Angiotensin II deteriorates advanced atherosclerosis by promoting MerTK cleavage and impairing efferocytosis through the AT(1)R/ROS/p38 MAPK/ADAM17 pathway. American Journal of Physiology-Cell Physiology, 317, C776-C787. https://doi.org/10.1152/ajpcell.00145.2019
doi: 10.1152/ajpcell.00145.2019
Couchie, D., Vaisman, B., Abderrazak, A., Mahmood, D. F. D., Hamza, M. M., Canesi, F., Diderot, V., El Hadri, K., Nègre-Salvayre, A., Le Page, A., et al. (2017). Human plasma Thioredoxin-80 increases with age and in ApoE(-/-) mice induces inflammation, angiogenesis, and atherosclerosis. Circulation, 136, 464–475. https://doi.org/10.1161/CIRCULATIONAHA.117.027612
doi: 10.1161/CIRCULATIONAHA.117.027612
Gooz, M. (2010). ADAM-17: The enzyme that does it all. Critical Reviews in Biochemistry and Molecular Biology, 45, 146–169. https://doi.org/10.3109/10409231003628015
doi: 10.3109/10409231003628015
Donners, M. M., Wolfs, I. M., Olieslagers, S., Mohammadi-Motahhari, Z., Tchaikovski, V., Heeneman, S., van Buul, J. D., Caolo, V., Molin, D. G., Post, M. J., & Waltenberger, J. (2010). A disintegrin and metalloprotease 10 is a novel mediator of vascular endothelial growth factor-induced endothelial cell function in angiogenesis and is associated with atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 2188–2195. https://doi.org/10.1161/ATVBAHA.110.213124
doi: 10.1161/ATVBAHA.110.213124
de Queiroz, T. M., Lakkappa, N., & Lazartigues, E. (2020). ADAM17-mediated shedding of inflammatory cytokines in hypertension. Frontiers in Pharmacology, 11, 1154. https://doi.org/10.3389/fphar.2020.01154
doi: 10.3389/fphar.2020.01154
Adrain, C., & Freeman, M. (2012). New lives for old: Evolution of pseudoenzyme function illustrated by iRhoms. Nature Reviews Molecular Cell Biology, 13, 489–498. https://doi.org/10.1038/nrm3392
doi: 10.1038/nrm3392
Dreymueller, D., Pruessmeyer, J., Groth, E., & Ludwig, A. (2012). The role of ADAM-mediated shedding in vascular biology. European Journal of Cell Biology, 91, 472–485. https://doi.org/10.1016/j.ejcb.2011.09.003
doi: 10.1016/j.ejcb.2011.09.003
Badenes, M., & Adrain, C. (2019). iRhom2 and TNF: Partners or enemies? Science Signaling, 12, 605, eaaz0444. https://doi.org/10.1126/scisignal.aaz0444
Patel, I. R., Attur, M. G., Patel, R. N., Stuchin, S. A., Abagyan, R. A., Abramson, S. B., & Amin, A. R. (1998). TNF-alpha convertase enzyme from human arthritis-affected cartilage: Isolation of cDNA by differential display, expression of the active enzyme, and regulation of TNF-alpha. The Journal of Immunology, 160, 4570–4579.
Ohtsu, H., Dempsey, P. J., & Eguchi, S. (2006). ADAMs as mediators of EGF receptor transactivation by G protein-coupled receptors. American Journal of Physiology-Cell Physiology, 291, C1-10. https://doi.org/10.1152/ajpcell.00620.2005
doi: 10.1152/ajpcell.00620.2005
Xu, P., & Derynck, R. (2010). Direct activation of TACE-mediated ectodomain shedding by p38 MAP kinase regulates EGF receptor-dependent cell proliferation. Molecular Cell, 37, 551–566. https://doi.org/10.1016/j.molcel.2010.01.034 .
doi: 10.1016/j.molcel.2010.01.034
Niu, A., Wang, B., & Li, Y. P. (2015). TNFα shedding in mechanically stressed cardiomyocytes is mediated by Src activation of TACE. Journal of Cellular Biochemistry, 116, 559–565. https://doi.org/10.1002/jcb.25006 .
doi: 10.1002/jcb.25006
Milla, M. E., Leesnitzer, M. A., Moss, M. L., Clay, W. C., Carter, H. L., Miller, A. B., Su, J. L., Lambert, M. H., Willard, D. H., Sheeley, D. M., et al. (1999). Specific sequence elements are required for the expression of functional tumor necrosis factor-alpha-converting enzyme (TACE). Journal of Biological Chemistry, 274, 30563–30570. https://doi.org/10.1074/jbc.274.43.30563
doi: 10.1074/jbc.274.43.30563
Maskos, K., Fernandez-Catalan, C., Huber, R., Bourenkov, G. P., Bartunik, H., Ellestad, G. A., Reddy, P., Wolfson, M. F., Rauch, C. T., Castner, B. J., et al. (1998). Crystal structure of the catalytic domain of human tumor necrosis factor-alpha-converting enzyme. Proceedings of the National Academy of Sciences of the United States of America, 95, 3408–3412. https://doi.org/10.1073/pnas.95.7.3408
doi: 10.1073/pnas.95.7.3408
Zhang, P., Shen, M., Fernandez-Patron, C., & Kassiri, Z. (2016). ADAMs family and relatives in cardiovascular physiology and pathology. Journal of Molecular and Cellular Cardiology, 93, 186–199. https://doi.org/10.1016/j.yjmcc.2015.10.031
doi: 10.1016/j.yjmcc.2015.10.031
Li, N., Boyd, K., Dempsey, P. J., & Vignali, D. A. (2007). Non-cell autonomous expression of TNF-alpha-converting enzyme ADAM17 is required for normal lymphocyte development. The Journal of Immunology, 178, 4214–4221. https://doi.org/10.4049/jimmunol.178.7.4214
doi: 10.4049/jimmunol.178.7.4214
Fan, H., & Derynck, R. (1999). Ectodomain shedding of TGF-alpha and other transmembrane proteins is induced by receptor tyrosine kinase activation and MAP kinase signaling cascades. EMBO Journal, 18, 6962–6972. https://doi.org/10.1093/emboj/18.24.6962
doi: 10.1093/emboj/18.24.6962
Gechtman, Z., Alonso, J. L., Raab, G., Ingber, D. E., & Klagsbrun, M. (1999). The shedding of membrane-anchored heparin-binding epidermal-like growth factor is regulated by the Raf/mitogen-activated protein kinase cascade and by cell adhesion and spreading. Journal of Biological Chemistry, 274, 28828–28835. https://doi.org/10.1074/jbc.274.40.28828
doi: 10.1074/jbc.274.40.28828
Kahn, J., Walcheck, B., Migaki, G. I., Jutila, M. A., & Kishimoto, T. K. (1998). Calmodulin regulates L-selectin adhesion molecule expression and function through a protease-dependent mechanism. Cell, 92, 809–818. https://doi.org/10.1016/s0092-8674(00)81408-7
doi: 10.1016/S0092-8674(00)81408-7
Reddy, P., Slack, J. L., Davis, R., Cerretti, D. P., Kozlosky, C. J., Blanton, R. A., Shows, D., Peschon, J. J., & Black, R. A. (2000). Functional analysis of the domain structure of tumor necrosis factor-alpha converting enzyme. Journal of Biological Chemistry, 275, 14608–14614. https://doi.org/10.1074/jbc.275.19.14608
doi: 10.1074/jbc.275.19.14608
Fan, H., Turck, C. W., & Derynck, R. (2003). Characterization of growth factor-induced serine phosphorylation of tumor necrosis factor-alpha converting enzyme and of an alternatively translated polypeptide. Journal of Biological Chemistry, 278, 18617–18627. https://doi.org/10.1074/jbc.M300331200
doi: 10.1074/jbc.M300331200
Gonzales, P. E., Solomon, A., Miller, A. B., Leesnitzer, M. A., Sagi, I., & Milla, M. E. (2004). Inhibition of the tumor necrosis factor-alpha-converting enzyme by its pro domain. Journal of Biological Chemistry, 279, 31638–31645. https://doi.org/10.1074/jbc.M401311200
doi: 10.1074/jbc.M401311200
Li, X., & Fan, H. (2004). Loss of ectodomain shedding due to mutations in the metalloprotease and cysteine-rich/disintegrin domains of the tumor necrosis factor-alpha converting enzyme (TACE). Journal of Biological Chemistry, 279, 27365–27375. https://doi.org/10.1074/jbc.M401690200
doi: 10.1074/jbc.M401690200
Black, R. A., Rauch, C. T., Kozlosky, C. J., Peschon, J. J., Slack, J. L., Wolfson, M. F., Castner, B. J., Stocking, K. L., Reddy, P., Srinivasan, S., et al. (1997). A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature, 385, 729–733. https://doi.org/10.1038/385729a0
doi: 10.1038/385729a0
Itai, T., Tanaka, M., & Nagata, S. (2001). Processing of tumor necrosis factor by the membrane-bound TNF-alpha-converting enzyme, but not its truncated soluble form. European Journal of Biochemistry, 268, 2074–2082. https://doi.org/10.1046/j.1432-1327.2001.02085.x
doi: 10.1046/j.1432-1327.2001.02085.x
Moss, M. L., Jin, S. L., Milla, M. E., Bickett, D. M., Burkhart, W., Carter, H. L., Chen, W. J., Clay, W. C., Didsbury, J. R., Hassler, D., et al. (1997). Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature, 385, 733–736. https://doi.org/10.1038/385733a0
doi: 10.1038/385733a0
Yang, J., LeBlanc, M. E., Cano, I., Saez-Torres, K. L., Saint-Geniez, M., Ng, Y. S., & D’Amore, P. A. (2020). ADAM10 and ADAM17 proteases mediate proinflammatory cytokine-induced and constitutive cleavage of endomucin from the endothelial surface. Journal of Biological Chemistry, 295, 6641–6651. https://doi.org/10.1074/jbc.RA119.011192
doi: 10.1074/jbc.RA119.011192
Shen, M., Morton, J., Davidge, S. T., & Kassiri, Z. (2017). Loss of smooth muscle cell disintegrin and metalloproteinase 17 transiently suppresses angiotensin II-induced hypertension and end-organ damage. Journal of Molecular and Cellular Cardiology, 103, 11–21. https://doi.org/10.1016/j.yjmcc.2016.12.001
doi: 10.1016/j.yjmcc.2016.12.001
Groth, E., Pruessmeyer, J., Babendreyer, A., Schumacher, J., Pasqualon, T., Dreymueller, D., Higashiyama, S., Lorenzen, I., Grötzinger, J., Cataldo, D., & Ludwig, A. (2016). Stimulated release and functional activity of surface expressed metalloproteinase ADAM17 in exosomes. Biochimica et Biophysica Acta, 1863, 2795–2808. https://doi.org/10.1016/j.bbamcr.2016.09.002
doi: 10.1016/j.bbamcr.2016.09.002
Geesala, R., Issuree, P. D., & Maretzky, T. (2020). The role of iRhom2 in metabolic and cardiovascular-related disorders. Frontiers in Cardiovascular Medicine, 7, 612808. https://doi.org/10.3389/fcvm.2020.612808
doi: 10.3389/fcvm.2020.612808
Wiley, H. S., Woolf, M. F., Opresko, L. K., Burke, P. M., Will, B., Morgan, J. R., & Lauffenburger, D. A. (1998). Removal of the membrane-anchoring domain of epidermal growth factor leads to intracrine signaling and disruption of mammary epithelial cell organization. Journal of Cell Biology, 143, 1317–1328. https://doi.org/10.1083/jcb.143.5.1317
doi: 10.1083/jcb.143.5.1317
Borrell-Pagès, M., Rojo, F., Albanell, J., Baselga, J., & Arribas, J. (2003). TACE is required for the activation of the EGFR by TGF-alpha in tumors. EMBO Journal, 22, 1114–1124. https://doi.org/10.1093/emboj/cdg111
doi: 10.1093/emboj/cdg111
Galazka, G., Windsor, L. J., Birkedal-Hansen, H., & Engler, J. A. (1996). APMA (4-aminophenylmercuric acetate) activation of stromelysin-1 involves protein interactions in addition to those with cysteine-75 in the propeptide. Biochemistry, 35, 11221–11227. https://doi.org/10.1021/bi960618e
doi: 10.1021/bi960618e
Van Wart, H. E., & Birkedal-Hansen, H. (1990). The cysteine switch: A principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proceedings of the National Academy of Sciences U S A, 87, 5578–5582. https://doi.org/10.1073/pnas.87.14.5578
doi: 10.1073/pnas.87.14.5578
Roghani, M., Becherer, J. D., Moss, M. L., Atherton, R. E., Erdjument-Bromage, H., Arribas, J., Blackburn, R. K., Weskamp, G., Tempst, P., & Blobel, C. P. (1999). Metalloprotease-disintegrin MDC9: Intracellular maturation and catalytic activity. Journal of Biological Chemistry, 274, 3531–3540. https://doi.org/10.1074/jbc.274.6.3531
doi: 10.1074/jbc.274.6.3531
Reiss, K., & Saftig, P. (2009). The “a disintegrin and metalloprotease” (ADAM) family of sheddases: Physiological and cellular functions. Seminars in Cell & Developmental Biology, 20, 126–137. https://doi.org/10.1016/j.semcdb.2008.11.002
doi: 10.1016/j.semcdb.2008.11.002
Amour, A., Knight, C. G., Webster, A., Slocombe, P. M., Stephens, P. E., Knäuper, V., Docherty, A. J., & Murphy, G. (2000). The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Letters, 473, 275–279. https://doi.org/10.1016/s0014-5793(00)01528-3
doi: 10.1016/S0014-5793(00)01528-3
Black, R. A. (2004). TIMP3 checks inflammation. Nature Genetics, 36, 934–935. https://doi.org/10.1038/ng0904-934
doi: 10.1038/ng0904-934
Zheng, Y., Schlondorff, J., & Blobel, C. P. (2002). Evidence for regulation of the tumor necrosis factor alpha-convertase (TACE) by protein-tyrosine phosphatase PTPH1. Journal of Biological Chemistry, 277, 42463–42470. https://doi.org/10.1074/jbc.M207459200
doi: 10.1074/jbc.M207459200
Stöhr, R., Cavalera, M., Menini, S., Mavilio, M., Casagrande, V., Rossi, C., Urbani, A., Cardellini, M., Pugliese, G., Menghini, R., & Federici, M. (2014). Loss of TIMP3 exacerbates atherosclerosis in ApoE null mice. Atherosclerosis, 235, 438–443. https://doi.org/10.1016/j.atherosclerosis.2014.05.946
doi: 10.1016/j.atherosclerosis.2014.05.946
Federici, M., Hribal, M. L., Menghini, R., Kanno, H., Marchetti, V., Porzio, O., Sunnarborg, S. W., Rizza, S., Serino, M., Cunsolo, V., et al. (2005). Timp3 deficiency in insulin receptor-haploinsufficient mice promotes diabetes and vascular inflammation via increased TNF-alpha. The Journal of Clinical Investigation, 115, 3494–3505. https://doi.org/10.1172/JCI26052
doi: 10.1172/JCI26052
Guinea-Viniegra, J., Zenz, R., Scheuch, H., Hnisz, D., Holcmann, M., Bakiri, L., Schonthaler, H. B., Sibilia, M., & Wagner, E. F. (2009). TNFalpha shedding and epidermal inflammation are controlled by Jun proteins. Genes & Development, 23, 2663–2674. https://doi.org/10.1101/gad.543109
doi: 10.1101/gad.543109
Basu, R., Fan, D., Kandalam, V., Lee, J., Das, S. K., Wang, X., Baldwin, T. A., Oudit, G. Y., & Kassiri, Z. (2012). Loss of Timp3 gene leads to abdominal aortic aneurysm formation in response to angiotensin II. Journal of Biological Chemistry, 287, 44083–44096. https://doi.org/10.1074/jbc.M112.425652
doi: 10.1074/jbc.M112.425652
Soond, S. M., Everson, B., Riches, D. W., & Murphy, G. (2005). ERK-mediated phosphorylation of Thr735 in TNFalpha-converting enzyme and its potential role in TACE protein trafficking. Journal of Cell Science, 118, 2371–2380. https://doi.org/10.1242/jcs.02357
doi: 10.1242/jcs.02357
Mendelson, K., Swendeman, S., Saftig, P., & Blobel, C. P. (2010). Stimulation of platelet-derived growth factor receptor beta (PDGFRbeta) activates ADAM17 and promotes metalloproteinase-dependent cross-talk between the PDGFRbeta and epidermal growth factor receptor (EGFR) signaling pathways. Journal of Biological Chemistry, 285, 25024–25032. https://doi.org/10.1074/jbc.M110.102566
doi: 10.1074/jbc.M110.102566
Li, R., Wang, T., Walia, K., Gao, B., & Krepinsky, J. C. (2018). Regulation of profibrotic responses by ADAM17 activation in high glucose requires its C-terminus and FAK. Journal of Cell Science, 131, jcs208629. https://doi.org/10.1242/jcs.208629
Siddharth, S., Nayak, A., Das, S., Nayak, D., Panda, J., Wyatt, M. D., & Kundu, C. N. (2018). The soluble nectin-4 ecto-domain promotes breast cancer induced angiogenesis via endothelial Integrin-β4. International Journal of Biochemistry & Cell Biology, 102, 151–160. https://doi.org/10.1016/j.biocel.2020.105860
doi: 10.1016/j.biocel.2018.07.011
Ding, X. F., Liang, H. Y., Sun, J. Y., Liu, S. H., Kan, Q. C., Wang, L. X., & Sun, T. W. (2019). Adipose-derived mesenchymal stem cells ameliorate the inflammatory reaction in CLP-induced septic acute lung injury rats via sTNFR1. Journal of Cellular Physiology, 234, 16582–16591. https://doi.org/10.1002/jcp.28329
Wang, H., Yuan, R., Cao, Q., Wang, M., Ren, D., Huang, X., Wu, M., Zhang, L., Zhao, X., Huo, X., et al. (2020). Astragaloside III activates TACE/ADAM17-dependent anti-inflammatory and growth factor signaling in endothelial cells in a p38-dependent fashion. Phytotherapy Research, 34, 1096–1107. https://doi.org/10.1002/ptr.6603
doi: 10.1002/ptr.6603
Szondy, Z., & Pallai, A. (2017). Transmembrane TNF-alpha reverse signaling leading to TGF-beta production is selectively activated by TNF targeting molecules: Therapeutic implications. Pharmacological Research, 115, 124–132. https://doi.org/10.1016/j.phrs.2016.11.025
doi: 10.1016/j.phrs.2016.11.025
Li, C., Gu, H., Yu, M., Yang, P., Zhang, M., Ba, H., Yin, Y., Wang, J., Yin, B., Zhou, X., & Li, Z. (2019). Inhibition of transmembrane TNF-α shedding by a specific antibody protects against septic shock. Cell Death & Disease, 10, 586. https://doi.org/10.1038/s41419-019-1808-6
doi: 10.1038/s41419-019-1808-6
He, B., Li, X., Hu, T., Lian, W., & Zhang, M. (2017). Construction of a lentiviral vector containing shRNA targeting ADAM17 and its role in attenuating endotoxemia in mice. Molecular Medicine Reports, 16, 6013–6019. https://doi.org/10.3892/mmr.2017.7307
doi: 10.3892/mmr.2017.7307
Wajant, H., Pfizenmaier, K., & Scheurich, P. (2003). Tumor necrosis factor signaling. Cell Death and Differentiation, 10, 45–65. https://doi.org/10.1038/sj.cdd.4401189
doi: 10.1038/sj.cdd.4401189
Kotyla, P. J. (2018). Bimodal function of anti-TNF treatment: shall we be concerned about anti-TNF treatment in patients with rheumatoid arthritis and heart failure? International Journal of Molecular Sciences, 19, 1739. https://doi.org/10.3390/ijms19061739
Arenas, Y. M., Cabrera-Pastor, A., Juciute, N., Mora-Navarro, E., & Felipo, V. (2020). Blocking glycine receptors reduces neuroinflammation and restores neurotransmission in cerebellum through ADAM17-TNFR1-NF-κβ pathway. Journal of Neuroinflammation, 17, 269. https://doi.org/10.1186/s12974-020-01941-y
doi: 10.1186/s12974-020-01941-y
Nicolaou, A., Zhao, Z., Northoff, B. H., Sass, K., Herbst, A., Kohlmaier, A., Chalaris, A., Wolfrum, C., Weber, C., Steffens, S., et al. (2017). Adam17 deficiency promotes atherosclerosis by enhanced TNFR2 signaling in mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 247–257. https://doi.org/10.1161/ATVBAHA.116.308682
doi: 10.1161/ATVBAHA.116.308682
Medler, J., & Wajant, H. (2019). Tumor necrosis factor receptor-2 (TNFR2): An overview of an emerging drug target. Expert Opinion on Therapeutic Targets, 23, 295–307. https://doi.org/10.1080/14728222.2019.1586886
doi: 10.1080/14728222.2019.1586886
Sharma, D., Malik, A., Guy, C., Vogel, P., & Kanneganti, T. D. (2019). TNF/TNFR axis promotes pyrin inflammasome activation and distinctly modulates pyrin inflammasomopathy. The Journal of Clinical Investigation, 129, 150–162. https://doi.org/10.1172/JCI121372
doi: 10.1172/JCI121372
Düsterhöft, S., Lokau, J., & Garbers, C. (2019). The metalloprotease ADAM17 in inflammation and cancer. Pathology, Research and Practice, 215, 152410. https://doi.org/10.1016/j.prp.2019.04.002
doi: 10.1016/j.prp.2019.04.002
Schumacher, N., & Rose-John, S. (2019). ADAM17 Activity and IL-6 Trans-Signaling in Inflammation and Cancer. Cancers, 11, 1736. https://doi.org/10.3390/cancers11111736
Saad, M. I., Alhayyani, S., McLeod, L., Yu, L., Alanazi, M., Deswaerte, V., Tang, K., Jarde, T., Smith, J. A., Prodanovic, Z., et al. (2019). ADAM17 selectively activates the IL-6 trans-signaling/ERK MAPK axis in KRAS-addicted lung cancer. EMBO Molecular Medicine, 11, e9976. https://doi.org/10.15252/emmm.201809976
Zegeye, M. M., Lindkvist, M., Fälker, K., Kumawat, A. K., Paramel, G., Grenegård, M., Sirsjö, A., & Ljungberg, L. U. (2018). Activation of the JAK/STAT3 and PI3K/AKT pathways are crucial for IL-6 trans-signaling-mediated pro-inflammatory response in human vascular endothelial cells. Cell Communication and Signaling: CCS, 16, 55. https://doi.org/10.1186/s12964-018-0268-4
doi: 10.1186/s12964-018-0268-4
Wimmer, R. A., Leopoldi, A., Aichinger, M., Kerjaschki, D., & Penninger, J. M. (2019). Generation of blood vessel organoids from human pluripotent stem cells. Nature Protocols, 14, 3082–3100. https://doi.org/10.1038/s41596-019-0213-z
doi: 10.1038/s41596-019-0213-z
Mishra, H. K., Ma, J., & Walcheck, B. (2017). Ectodomain shedding by ADAM17: Its role in neutrophil recruitment and the impairment of this process during sepsis. Frontiers in Cellular and Infection Microbiology, 7, 138. https://doi.org/10.3389/fcimb.2017.00138
doi: 10.3389/fcimb.2017.00138
Shalaby, L., Thounaojam, M., Tawfik, A., Li, J., Hussein, K., Jahng, W. J., Al-Shabrawey, M., Kwok, H. F., Bartoli, M., & Gutsaeva, D. (2020). Role of Endothelial ADAM17 in Early Vascular Changes Associated with Diabetic Retinopathy. Journal of Clinical Medicine, 9, 400. https://doi.org/10.3390/jcm9020400
Lian, G., Li, X., Zhang, L., Zhang, Y., Sun, L., Zhang, X., Liu, H., Pang, Y., Kong, W., Zhang, T., et al. (2019). Macrophage metabolic reprogramming aggravates aortic dissection through the HIF1α-ADAM17 pathway(✰). eBioMedicine, 49, 291–304. https://doi.org/10.1016/j.ebiom.2019.09.041
doi: 10.1016/j.ebiom.2019.09.041
Zeng, S. Y., Yang, L., Hong, C. L., Lu, H. Q., Yan, Q. J., Chen, Y., & Qin, X. P. (2018). Evidence that ADAM17 mediates the protective action of CGRP against angiotensin II-induced inflammation in vascular smooth muscle cells. Mediators of Inflammation, 2018, 2109352. https://doi.org/10.1155/2018/2109352
doi: 10.1155/2018/2109352
Shen, M., Hu, M., Fedak, P. W. M., Oudit, G. Y., & Kassiri, Z. (2018). Cell-specific functions of ADAM17 regulate the progression of thoracic aortic aneurysm. Circulation Research, 123, 372–388. https://doi.org/10.1161/CIRCRESAHA.118.313181
doi: 10.1161/CIRCRESAHA.118.313181
Gebremariam, H. G., Qazi, K. R., Somiah, T., Pathak, S. K., Sjölinder, H., Sverremark Ekström, E., & Jonsson, A. B. (2019). Lactobacillus gasseri suppresses the production of proinflammatory cytokines in Helicobacter pylori-infected macrophages by inhibiting the expression of ADAM17. Frontiers in Immunology, 10, 2326. https://doi.org/10.3389/fimmu.2019.02326
doi: 10.3389/fimmu.2019.02326
Zhou, C., Qin, Y., Chen, R., Gao, F., Zhang, J., & Lu, F. (2020). Fenugreek attenuates obesity-induced inflammation and improves insulin resistance through downregulation of iRhom2/TACE. Life Sciences, 258, 118222. https://doi.org/10.1016/j.lfs.2020.118222
doi: 10.1016/j.lfs.2020.118222
Mishra, H. K., Ma, J., Mendez, D., Hullsiek, R., Pore, N., & Walcheck, B. (2020). Blocking ADAM17 Function with a Monoclonal Antibody Improves Sepsis Survival in a Murine Model of Polymicrobial Sepsis. International Journal of Molecular Sciences, 21, 6688. https://doi.org/10.3390/ijms21186688
Wang, Y., Chen, L., Tian, Z., Shen, X., Wang, X., Wu, H., Wang, Y., Zou, J., & Liang, J. (2018). CRISPR-Cas9 mediated gene knockout in human coronary artery endothelial cells reveals a pro-inflammatory role of TLR2. Cell Biology International, 42, 187–193. https://doi.org/10.1002/cbin.10885
doi: 10.1002/cbin.10885
Mao, C., Li, D., Zhou, E., Zhang, J., Wang, C., & Xue, C. (2021). Nicotine exacerbates atherosclerosis through a macrophage-mediated endothelial injury pathway. Aging (Albany NY), 13, 7627–7643. https://doi.org/10.18632/aging.202660
doi: 10.18632/aging.202660
Hannemann, C., Schecker, J. H., Brettschneider, A., Grune, J., Rösener, N., Weller, A., Stangl, V., Fisher, E. A., Stangl, K., Ludwig, A., & Hewing, B. (2022). Deficiency of inactive rhomboid protein 2 (iRhom2) attenuates diet-induced hyperlipidaemia and early atherogenesis. Cardiovascular Research, 118, 156–168. https://doi.org/10.1093/cvr/cvab041
doi: 10.1093/cvr/cvab041
Tang, J., Frey, J. M., Wilson, C. L., Moncada-Pazos, A., Levet, C., Freeman, M., Rosenfeld, M. E., Stanley, E. R., Raines, E. W., & Bornfeldt, K. E. (2018). Neutrophil and Macrophage Cell Surface Colony-Stimulating Factor 1 Shed by ADAM17 Drives Mouse Macrophage Proliferation in Acute and Chronic Inflammation. Molecular and Cellular Biology, 38, e00103–18. https://doi.org/10.1128/MCB.00103-18
Sakamuri, S., Higashi, Y., Sukhanov, S., Siddesha, J. M., Delafontaine, P., Siebenlist, U., & Chandrasekar, B. (2016). TRAF3IP2 mediates atherosclerotic plaque development and vulnerability in ApoE(-/-) mice. Atherosclerosis, 252, 153–160. https://doi.org/10.1016/j.atherosclerosis.2016.05.029
doi: 10.1016/j.atherosclerosis.2016.05.029
Jia, Y., & Kong, W. (2017). ADAM17: A molecular switch to control TNFR2 during atherogenesis in vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 176–178. https://doi.org/10.1161/ATVBAHA.116.308840
doi: 10.1161/ATVBAHA.116.308840
Rizza, S., Copetti, M., Cardellini, M., Menghini, R., Pecchioli, C., Luzi, A., Di Cola, G., Porzio, O., Ippoliti, A., Romeo, F., et al. (2015). A score including ADAM17 substrates correlates to recurring cardiovascular event in subjects with atherosclerosis. Atherosclerosis, 239, 459–464. https://doi.org/10.1016/j.atherosclerosis.2015.01.029
doi: 10.1016/j.atherosclerosis.2015.01.029
Canault, M., Leroyer, A. S., Peiretti, F., Lesèche, G., Tedgui, A., Bonardo, B., Alessi, M. C., Boulanger, C. M., & Nalbone, G. (2007). Microparticles of human atherosclerotic plaques enhance the shedding of the tumor necrosis factor-alpha converting enzyme/ADAM17 substrates, tumor necrosis factor and tumor necrosis factor receptor-1. American Journal of Pathology, 171, 1713–1723. https://doi.org/10.2353/ajpath.2007.070021
doi: 10.2353/ajpath.2007.070021
Ruparelia, N., & Choudhury, R. (2020). Inflammation and atherosclerosis: What is on the horizon? Heart, 106, 80–85. https://doi.org/10.1136/heartjnl-2018-314230
doi: 10.1136/heartjnl-2018-314230
Speck, N., Brandsch, C., Schmidt, N., Yazdekhasti, N., Hirche, F., Lucius, R., Rimbach, G., Stangl, G. I., & Reiss, K. (2015). The antiatherogenic effect of fish oil in male mice is associated with a diminished release of endothelial ADAM17 and ADAM10 substrates. Journal of Nutrition, 145, 1218–1226. https://doi.org/10.3945/jn.115.211375
doi: 10.3945/jn.115.211375
Liao, J., An, X., Yang, X., Lin, Q. Y., Liu, S., Xie, Y., Bai, J., Xia, Y. L., & Li, H. H. (2020). Deficiency of LMP10 attenuates diet-induced atherosclerosis by inhibiting macrophage polarization and inflammation in apolipoprotein E deficient mice. Frontiers in Cell Developmental Biology, 8, 592048. https://doi.org/10.3389/fcell.2020.592048
doi: 10.3389/fcell.2020.592048
Canault, M., Peiretti, F., Kopp, F., Bonardo, B., Bonzi, M. F., Coudeyre, J. C., Alessi, M. C., Juhan-Vague, I., & Nalbone, G. (2006). The TNF alpha converting enzyme (TACE/ADAM17) is expressed in the atherosclerotic lesions of apolipoprotein E-deficient mice: Possible contribution to elevated plasma levels of soluble TNF alpha receptors. Atherosclerosis, 187, 82–91. https://doi.org/10.1016/j.atherosclerosis.2005.08.031
doi: 10.1016/j.atherosclerosis.2005.08.031
Zhao, X., Kong, J., Zhao, Y., Wang, X., Bu, P., Zhang, C., & Zhang, Y. (2015). Gene silencing of TACE enhances plaque stability and improves vascular remodeling in a rabbit model of atherosclerosis. Science and Reports, 5, 17939. https://doi.org/10.1038/srep17939
doi: 10.1038/srep17939
Beldman, T. J., Senders, M. L., Alaarg, A., Pérez-Medina, C., Tang, J., Zhao, Y., Fay, F., Deichmöller, J., Born, B., Desclos, E., et al. (2017). Hyaluronan nanoparticles selectively target plaque-associated macrophages and improve plaque stability in atherosclerosis. ACS Nano, 11, 5785–5799. https://doi.org/10.1021/acsnano.7b01385
doi: 10.1021/acsnano.7b01385
Grootaert, M. O. J., Moulis, M., Roth, L., Martinet, W., Vindis, C., Bennett, M. R., & De Meyer, G. R. Y. (2018). Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovascular Research, 114, 622–634. https://doi.org/10.1093/cvr/cvy007
doi: 10.1093/cvr/cvy007
Wang, L., Chen, Q., Ke, D., & Li, G. (2017). Ghrelin inhibits atherosclerotic plaque angiogenesis and promotes plaque stability in a rabbit atherosclerotic model. Peptides, 90, 17–26. https://doi.org/10.1016/j.peptides.2017.01.013
doi: 10.1016/j.peptides.2017.01.013
Li, Z., Wang, Y., Wu, X., Liu, X., Huang, S., He, Y., Liu, S., & Ren, L. (2020). Studying the factors of human carotid atherosclerotic plaque rupture, by calculating stress/strain in the plaque, based on CEUS images: A numerical study. Frontiers in Neuroinformatics, 14, 596340. https://doi.org/10.3389/fninf.2020.596340
doi: 10.3389/fninf.2020.596340
Caolo, V., Swennen, G., Chalaris, A., Wagenaar, A., Verbruggen, S., Rose-John, S., Molin, D. G., Vooijs, M., & Post, M. J. (2015). ADAM10 and ADAM17 have opposite roles during sprouting angiogenesis. Angiogenesis, 18, 13–22. https://doi.org/10.1007/s10456-014-9443-4
doi: 10.1007/s10456-014-9443-4
Oksala, N., Levula, M., Airla, N., Pelto-Huikko, M., Ortiz, R. M., Järvinen, O., Salenius, J. P., Ozsait, B., Komurcu-Bayrak, E., Erginel-Unaltuna, N., et al. (2009). ADAM-9, ADAM-15, and ADAM-17 are upregulated in macrophages in advanced human atherosclerotic plaques in aorta and carotid and femoral arteries–Tampere vascular study. Annals of Medicine, 41, 279–290. https://doi.org/10.1080/07853890802649738
doi: 10.1080/07853890802649738
Poteshkina, N. G., Kovalevskaya, E. A., Krylova, N. S., & Fettser, D. V. (2019). Myocardial ischemia in patients with hypertrophic cardiomyopathy. Probl Sotsialnoi Gig Zdravookhranenniiai Istor Med, 27, 671–676. https://doi.org/10.32687/0869-866X-2019-27-si1-671-676
Iturralde, P., & Gil, M. (1986). Obstructive hypertrophic myocardiopathy and coronary atherosclerosis. Archivos del Instituto de Cardiologia de Mexico, 56, 135–145.
Marino, A., Zhang, Y., Rubinelli, L., Riemma, M. A., Ip, J. E., & Di Lorenzo, A. (2019). Pressure overload leads to coronary plaque formation, progression, and myocardial events in ApoE-/- mice. JCI insight, 4, e128220. https://doi.org/10.1172/jci.insight.128220
Satoh, M., Nakamura, M., Satoh, H., Saitoh, H., Segawa, I., & Hiramori, K. (2000). Expression of tumor necrosis factor-alpha–converting enzyme and tumor necrosis factor-alpha in human myocarditis. Journal of the American College of Cardiology, 36, 1288–1294. https://doi.org/10.1016/s0735-1097(00)00827-5
doi: 10.1016/S0735-1097(00)00827-5
Fedak, P. W., Moravec, C. S., McCarthy, P. M., Altamentova, S. M., Wong, A. P., Skrtic, M., Verma, S., Weisel, R. D., & Li, R. K. (2006). Altered expression of disintegrin metalloproteinases and their inhibitor in human dilated cardiomyopathy. Circulation, 113, 238–245. https://doi.org/10.1161/CIRCULATIONAHA.105.571414
doi: 10.1161/CIRCULATIONAHA.105.571414
Satoh, M., Iwasaka, J., Nakamura, M., Akatsu, T., Shimoda, Y., & Hiramori, K. (2004). Increased expression of tumor necrosis factor-alpha converting enzyme and tumor necrosis factor-alpha in peripheral blood mononuclear cells in patients with advanced congestive heart failure. European Journal of Heart Failure, 6, 869–875. https://doi.org/10.1016/j.ejheart.2004.02.007
doi: 10.1016/j.ejheart.2004.02.007
Luo, Y., Jiang, N., May, H. I., Luo, X., Ferdous, A., Schiattarella, G. G., Chen, G., Li, Q., Li, C., Rothermel, B. A., et al. (2021). Cooperative binding of ETS2 and NFAT links Erk1/2 and calcineurin signaling in the pathogenesis of cardiac hypertrophy. Circulation, 144, 34–51. https://doi.org/10.1161/CIRCULATIONAHA.120.052384
doi: 10.1161/CIRCULATIONAHA.120.052384
Korotaeva, A. A., Samoilova, E. V., Chepurnova, D. A., Zhitareva, I. V., Shuvalova, Y. A., & Prokazova, N. V. (2018). Soluble glycoprotein 130 is inversely related to severity of coronary atherosclerosis. Biomarkers, 23, 527–532. https://doi.org/10.1080/1354750X.2018.1458151
doi: 10.1080/1354750X.2018.1458151
Zhou, M., Dai, W., Cui, Y., & Li, Y. (2020). Estrogen downregulates gp130 expression in HUVECs by regulating ADAM10 and ADAM17 via the estrogen receptor. Biochemical and Biophysical Research Communications, 523, 753–758. https://doi.org/10.1016/j.bbrc.2020.01.008
doi: 10.1016/j.bbrc.2020.01.008
Wolf, J., Waetzig, G. H., Chalaris, A., Reinheimer, T. M., Wege, H., Rose-John, S., & Garbers, C. (2016). Different soluble forms of the interleukin-6 family signal transducer gp130 fine-tune the blockade of interleukin-6 Trans-signaling. Journal of Biological Chemistry, 291, 16186–16196. https://doi.org/10.1074/jbc.M116.718551
doi: 10.1074/jbc.M116.718551
Purcell, M. K., Mu, J. L., Higgins, D. C., Elango, R., Whitmore, H., Harris, S., & Paigen, B. (2001). Fine mapping of Ath6, a quantitative trait locus for atherosclerosis in mice. Mammalian Genome, 12, 495–500. https://doi.org/10.1007/s00335001-0006-9
doi: 10.1007/s00335001-0006-9
Tsakadze, N. L., Sithu, S. D., Sen, U., English, W. R., Murphy, G., & D’Souza, S. E. (2006). Tumor necrosis factor-alpha-converting enzyme (TACE/ADAM-17) mediates the ectodomain cleavage of intercellular adhesion molecule-1 (ICAM-1). Journal of Biological Chemistry, 281, 3157–3164. https://doi.org/10.1074/jbc.M510797200
doi: 10.1074/jbc.M510797200
Singh, R. J., Mason, J. C., Lidington, E. A., Edwards, D. R., Nuttall, R. K., Khokha, R., Knauper, V., Murphy, G., & Gavrilovic, J. (2005). Cytokine stimulated vascular cell adhesion molecule-1 (VCAM-1) ectodomain release is regulated by TIMP-3. Cardiovascular Research, 67, 39–49. https://doi.org/10.1016/j.cardiores.2005.02.020
doi: 10.1016/j.cardiores.2005.02.020
Garton, K. J., Gough, P. J., Blobel, C. P., Murphy, G., Greaves, D. R., Dempsey, P. J., & Raines, E. W. (2001). Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). Journal of Biological Chemistry, 276, 37993–38001. https://doi.org/10.1074/jbc.M106434200
doi: 10.1074/jbc.M106434200
Kitagawa, K., Matsumoto, M., Sasaki, T., Hashimoto, H., Kuwabara, K., Ohtsuki, T., & Hori, M. (2002). Involvement of ICAM-1 in the progression of atherosclerosis in APOE-knockout mice. Atherosclerosis, 160, 305–310. https://doi.org/10.1016/s0021-9150(01)00587-1
doi: 10.1016/S0021-9150(01)00587-1
Reinacher, M., Müller, H., Thiel, W., & Rudolph, R. L. (1978). Localization of papillomavirus and virus-specific antigens in the skin of tumor-bearing Mastomys natalensis (GRA Giessen). Medical Microbiology and Immunology, 165, 93–99. https://doi.org/10.1007/BF02122744
doi: 10.1007/BF02122744
Teupser, D., Pavlides, S., Tan, M., Gutierrez-Ramos, J. C., Kolbeck, R., & Breslow, J. L. (2004). Major reduction of atherosclerosis in fractalkine (CX3CL1)-deficient mice is at the brachiocephalic artery, not the aortic root. Proc Natl Acad Sci U S A, 101, 17795–17800. https://doi.org/10.1073/pnas.0408096101
doi: 10.1073/pnas.0408096101
Chalaris, A., Adam, N., Sina, C., Rosenstiel, P., Lehmann-Koch, J., Schirmacher, P., Hartmann, D., Cichy, J., Gavrilova, O., Schreiber, S., et al. (2010). Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice. Journal of Experimental Medicine, 207, 1617–1624. https://doi.org/10.1084/jem.20092366
doi: 10.1084/jem.20092366
Fan, D., Takawale, A., Shen, M., Wang, W., Wang, X., Basu, R., Oudit, G. Y., & Kassiri, Z. (2015). Cardiomyocyte A Disintegrin And Metalloproteinase 17 (ADAM17) Is essential in post-myocardial infarction repair by regulating angiogenesis. Circulation. Heart Failure, 8, 970–979. https://doi.org/10.1161/CIRCHEARTFAILURE.114.002029
doi: 10.1161/CIRCHEARTFAILURE.114.002029
DasGupta, S., Murumkar, P. R., Giridhar, R., & Yadav, M. R. (2009). Current perspective of TACE inhibitors: A review. Bioorganic & Medicinal Chemistry, 17, 444–459. https://doi.org/10.1016/j.bmc.2008.11.067
doi: 10.1016/j.bmc.2008.11.067
Wong, E., Cohen, T., Romi, E., Levin, M., Peleg, Y., Arad, U., Yaron, A., Milla, M. E., & Sagi, I. (2016). Harnessing the natural inhibitory domain to control TNFα converting enzyme (TACE) activity in vivo. Science and Reports, 6, 35598. https://doi.org/10.1038/srep35598
doi: 10.1038/srep35598
Takayanagi, T., Forrester, S. J., Kawai, T., Obama, T., Tsuji, T., Elliott, K. J., Nuti, E., Rossello, A., Kwok, H. F., Scalia, R., et al. (2016). Vascular ADAM17 as a novel therapeutic target in mediating cardiovascular hypertrophy and perivascular fibrosis Induced by angiotensin II. Hypertension, 68, 949–955. https://doi.org/10.1161/HYPERTENSIONAHA.116.07620
doi: 10.1161/HYPERTENSIONAHA.116.07620
Martz, L. (2014). Taking TIMP3 to heart. Science-Business eXchange, 7, 246–246. https://doi.org/10.1038/scibx.2014.246
doi: 10.1038/scibx.2014.246
Moss, M. L., Sklair-Tavron, L., & Nudelman, R. (2008). Drug insight: Tumor necrosis factor-converting enzyme as a pharmaceutical target for rheumatoid arthritis. Nature Clinical Practice Rheumatology, 4, 300–309. https://doi.org/10.1038/ncprheum0797
doi: 10.1038/ncprheum0797
Thabet, M. M., & Huizinga, T. W. (2006). Drug evaluation: Apratastat, a novel TACE/MMP inhibitor for rheumatoid arthritis. Current Opinion in Investigational Drugs, 7, 1014–1019.
Horiuchi, K., Kimura, T., Miyamoto, T., Takaishi, H., Okada, Y., Toyama, Y., & Blobel, C. P. (2007). Cutting edge: TNF-alpha-converting enzyme (TACE/ADAM17) inactivation in mouse myeloid cells prevents lethality from endotoxin shock. The Journal of Immunology, 179, 2686–2689. https://doi.org/10.4049/jimmunol.179.5.2686
doi: 10.4049/jimmunol.179.5.2686
Aktas, B., Pozgajova, M., Bergmeier, W., Sunnarborg, S., Offermanns, S., Lee, D., Wagner, D. D., & Nieswandt, B. (2005). Aspirin induces platelet receptor shedding via ADAM17 (TACE). Journal of Biological Chemistry, 280, 39716–39722. https://doi.org/10.1074/jbc.M507762200
doi: 10.1074/jbc.M507762200
Gómez-Gaviro, M. V., González-Alvaro, I., Domínguez-Jiménez, C., Peschon, J., Black, R. A., Sánchez-Madrid, F., & Díaz-González, F. (2002). Structure-function relationship and role of tumor necrosis factor-alpha-converting enzyme in the down-regulation of L-selectin by non-steroidal anti-inflammatory drugs. Journal of Biological Chemistry, 277, 38212–38221. https://doi.org/10.1074/jbc.M205142200
doi: 10.1074/jbc.M205142200
Teng, M., Wolf, M., Ofsthun, M. N., Lazarus, J. M., Hernán, M. A., Camargo, C. A., Jr., & Thadhani, R. (2005). Activated injectable vitamin D and hemodialysis survival: A historical cohort study. Journal of the American Society of Nephrology, 16, 1115–1125. https://doi.org/10.1681/ASN.2004070573
doi: 10.1681/ASN.2004070573
Arcidiacono, M. V., Yang, J., Fernandez, E., & Dusso, A. (2015). The induction of C/EBPβ contributes to vitamin D inhibition of ADAM17 expression and parathyroid hyperplasia in kidney disease. Nephrology, Dialysis, Transplantation, 30, 423–433. https://doi.org/10.1093/ndt/gfu311
doi: 10.1093/ndt/gfu311
Dusso, A., Arcidiacono, M. V., Yang, J., & Tokumoto, M. (2010). Vitamin D inhibition of TACE and prevention of renal osteodystrophy and cardiovascular mortality. Journal of Steroid Biochemistry and Molecular Biology, 121, 193–198. https://doi.org/10.1016/j.jsbmb.2010.03.064
doi: 10.1016/j.jsbmb.2010.03.064
Kawai, T., Elliott, K. J., Scalia, R., & Eguchi, S. (2021). Contribution of ADAM17 and related ADAMs in cardiovascular diseases. Cellular and Molecular Life Sciences, 78, 4161–4187. https://doi.org/10.1007/s00018-021-03779-w
doi: 10.1007/s00018-021-03779-w
Cho, Y., Park, D., & Kim, C. (2017). Disruption of TACE-filamin interaction can inhibit TACE-mediated ectodomain shedding. Biochemical and Biophysical Research Communications, 490, 997–1003. https://doi.org/10.1016/j.bbrc.2017.06.153
doi: 10.1016/j.bbrc.2017.06.153
Sun, C., Hu, A., Wang, S., Tian, B., Jiang, L., Liang, Y., Wang, H., & Dong, J. (2020). ADAM17-regulated CX3CL1 expression produced by bone marrow endothelial cells promotes spinal metastasis from hepatocellular carcinoma. International Journal of Oncology, 57, 249–263. https://doi.org/10.3892/ijo.2020.5045
Coglievina, M., Guarnaccia, C., Zlatev, V., Pongor, S., & Pintar, A. (2013). Jagged-1 juxtamembrane region: Biochemical characterization and cleavage by ADAM17 (TACE) catalytic domain. Biochemical and Biophysical Research Communications, 432, 666–671. https://doi.org/10.1016/j.bbrc.2013.02.022
doi: 10.1016/j.bbrc.2013.02.022
Arai, J., Goto, K., Tanoue, Y., Ito, S., Muroyama, R., Matsubara, Y., Nakagawa, R., Kaise, Y., Lim, L. A., Yoshida, H., & Kato, N. (2018). Enzymatic inhibition of MICA sheddase ADAM17 by lomofungin in hepatocellular carcinoma cells. International Journal of Cancer, 143, 2575–2583. https://doi.org/10.1002/ijc.31615
doi: 10.1002/ijc.31615
Kanzaki, H., Makihira, S., Suzuki, M., Ishii, T., Movila, A., Hirschfeld, J., Mawardi, H., Lin, X., Han, X., Taubman, M. A., & Kawai, T. (2016). Soluble RANKL cleaved from activated lymphocytes by TNF-α-converting enzyme contributes to osteoclastogenesis in periodontitis. The Journal of Immunology, 197, 3871–3883. https://doi.org/10.4049/jimmunol.1601114
doi: 10.4049/jimmunol.1601114
Xu, J., Sriramula, S., Xia, H., Moreno-Walton, L., Culicchia, F., Domenig, O., Poglitsch, M., & Lazartigues, E. (2017). Clinical relevance and role of neuronal AT(1) receptors in ADAM17-mediated ACE2 shedding in neurogenic hypertension. Circulation Research, 121, 43–55. https://doi.org/10.1161/CIRCRESAHA.116.310509
doi: 10.1161/CIRCRESAHA.116.310509
Kanzaki, H., Shinohara, F., Suzuki, M., Wada, S., Miyamoto, Y., Yamaguchi, Y., Katsumata, Y., Makihira, S., Kawai, T., Taubman, M. A., & Nakamura, Y. (2016). A-Disintegrin and metalloproteinase (ADAM) 17 enzymatically degrades interferon-gamma. Science and Reports, 6, 32259. https://doi.org/10.1038/srep32259
doi: 10.1038/srep32259
Parekh, R. U., & Sriramula, S. (2020). Activation of Kinin B1R Upregulates ADAM17 and Results in ACE2 Shedding in Neurons. International Journal of Molecular Sciences, 22(1), 145. https://doi.org/10.3390/ijms22010145
Peng, Q., Deng, Y., Yang, X., Leng, X., Yang, Y., & Liu, H. (2016). Genetic variants of ADAM17 are implicated in the pathological process of Kawasaki disease and secondary coronary artery lesions via the TGF-β/SMAD3 signaling pathway. European Journal of Pediatrics, 175, 705–713. https://doi.org/10.1007/s00431-016-2696-8
doi: 10.1007/s00431-016-2696-8
Nielsen, M. A., Andersen, T., Etzerodt, A., Kragstrup, T. W., Rasmussen, T. K., Stengaard-Pedersen, K., Hetland, M. L., Hørslev-Petersen, K., Junker, P., Østergaard, M., et al. (2016). A disintegrin and metalloprotease-17 and galectin-9 are important regulators of local 4–1BB activity and disease outcome in rheumatoid arthritis. Rheumatology (Oxford), 55, 1871–1879. https://doi.org/10.1093/rheumatology/kew237
doi: 10.1093/rheumatology/kew237
Mohammed, R. N., Wehenkel, S. C., Galkina, E. V., Yates, E. K., Preece, G., Newman, A., Watson, H. A., Ohme, J., Bridgeman, J. S., Durairaj, R. R. P., et al. (2019). ADAM17-dependent proteolysis of L-selectin promotes early clonal expansion of cytotoxic T cells. Science and Reports, 9, 5487. https://doi.org/10.1038/s41598-019-41811-z
doi: 10.1038/s41598-019-41811-z
Orme, J. J., Jazieh, K. A., Xie, T., Harrington, S., Liu, X., Ball, M., Madden, B., Charlesworth, M. C., Azam, T. U., Lucien, F., et al. (2020). ADAM10 and ADAM17 cleave PD-L1 to mediate PD-(L)1 inhibitor resistance. Oncoimmunology, 9, 1744980. https://doi.org/10.1080/2162402X.2020.1744980
doi: 10.1080/2162402X.2020.1744980