Prediction of Central Visual Field Severity in Glaucoma.
Journal
Journal of glaucoma
ISSN: 1536-481X
Titre abrégé: J Glaucoma
Pays: United States
ID NLM: 9300903
Informations de publication
Date de publication:
01 06 2022
01 06 2022
Historique:
received:
25
11
2021
accepted:
19
03
2022
entrez:
1
6
2022
pubmed:
2
6
2022
medline:
7
6
2022
Statut:
ppublish
Résumé
The severity of central visual field (VF) defects on 24-2 VF and related scotomas on 10-2 VF may be predicted by assessing perimetric defects at abnormal central 12 points on 24-2 VF in early glaucoma. Investigating the association between perimetric parameters at abnormal central 12 points on 24-2 VF and the severity of central visual field defects (CVFDs) on 24-2 VF and related parafoveal scotomas on 10-2 VF. We examined 64 eyes of 56 glaucoma patients with CVFDs on 24-2 VF with a mean deviation better than -7 dB and completed 24-2 and 10-2 VF testing within 6 months. On the basis of 10-2 VFs' pattern defects, eyes were grouped into 3: an arcuate parafoveal scotoma, severe defect; partial arcuate, moderate defect; and minimal defect. VF parameters at abnormal points (P<1%) within the central-most 4 and paracentral 8 points on total deviation/pattern deviation plots on 24-2 VF were analyzed to predict the severity of CVFDs. Eyes with arcuate scotoma showed more functional loss than eyes without arcuate scotoma on 10-2 VF (P<0.001). A significant association was observed between abnormal 24-2 VF points' (<1%) threshold sensitivity lower than 20 dB [odds ratio (OR)=7.2; P=0.002 and OR=5.1; P=0.003 for the central 4 and paracentral 8 points, respectively] and defect values worse than -15 dB (OR=8.0 and 5.6 for the central 4 and paracentral 8 points, respectively, P=0.005) with arcuate scotoma on 10-2 VF. Superior nasal defect in the central 5 degrees on 24-2 VF was significantly associated with an arcuate defect on 10-2 VF (P<0.001). Clinicians may predict the severity of CVFDs on 24-2 VF and parafoveal scotomas on 10-2 VF by measuring threshold sensitivities and defect values at abnormal central 12 points (<1%) on 24-2 VF in early glaucoma.
Identifiants
pubmed: 35649258
doi: 10.1097/IJG.0000000000002031
pii: 00061198-202206000-00010
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
430-437Informations de copyright
Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.
Déclaration de conflit d'intérêts
Disclosure: R.N.W.: Heidelberg Engineering (F), Carl Zeiss Meditec (F), Konan (F), National Eye Institute (F), Optovue (F), Centervue (F), Allergan (C), Eyenovia (C), Topcon (C, F), Nicox (C), Equinox (C). The remaining authors declare no conflict of interest.
Références
Kim JM, Kyung H, Shim SH, et al. Location of initial visual field defects in glaucoma and their modes of deterioration. Invest Ophthalmol Vis Sci. 2015;56:7956–7962.
Drance SM. The early field defects in glaucoma. Invest Ophthalmol. 1969;8:84–91.
Hood DC, Raza AS, de Moraes CG, et al. Initial arcuate defects within the central 10 degrees in glaucoma. Invest Ophthalmol Vis Sci. 2011;52:940–946.
Hood DC, Raza AS, de Moraes CG, et al. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013;32:1–21.
Langerhorst C, Carenini L, Bakker D, et al. Measurements for Description of Very Early Glaucomatous Field Defects Perimetry Update 1996/1997. New York, NY: Kugler; 1997:67–73.
De Moraes CG, Hood DC, Thenappan A, et al. 24-2 visual fields miss central defects shown on 10-2 tests in glaucoma suspects, ocular hypertensives, and early glaucoma. Ophthalmology. 2017;124:1449–1456.
Grillo LM, Wang DL, Ramachandran R, et al. The 24-2 visual field test misses central macular damage confirmed by the 10-2 visual field test and optical coherence tomography. Transl Vis Sci Technol. 2016;5:15.
Traynis I, De Moraes CG, Raza AS, et al. Prevalence and nature of early glaucomatous defects in the central 10° of the visual field. JAMA Ophthalmol. 2014;132:291–297.
Park SC, Kung Y, Su D, et al. Parafoveal scotoma progression in glaucoma: humphrey 10-2 versus 24-2 visual field analysis. Ophthalmology. 2013;120:1546–1550.
Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comparative Neurol. 1990;300:5–25.
Park HY, Hwang BE, Shin HY, et al. Clinical clues to predict the presence of parafoveal scotoma on Humphrey 10-2 visual field using a Humphrey 24-2 visual field. Am J Ophthalmol. 2016;161:150–159.
Asaoka R. Mapping glaucoma patients’ 30-2 and 10-2 visual fields reveals clusters of test points damaged in the 10-2 grid that are not sampled in the sparse 30-2 grid. PLoS One. 2014;9:e98525.
West ME, Sharpe GP, Hutchison DM, et al. Value of 10-2 visual field testing in glaucoma patients with early 24-2 visual field loss. Ophthalmology. 2021;128:545–553.
Sullivan-Mee M, Karin Tran MT, Pensyl D, et al. Prevalence, features, and severity of glaucomatous visual field loss measured with the 10-2 achromatic threshold visual field test. Am J Ophthalmol. 2016;168:40–51.
Schiefer U, Papageorgiou E, Sample PA, et al. Spatial pattern of glaucomatous visual field loss obtained with regionally condensed stimulus arrangements. Invest Ophthalmol Vis Sci. 2010;51:5685–5689.
Chakravarti T, Moghimi S, De Moraes CG, et al. Central-most visual field defects in early glaucoma. J Glaucoma. 2021;30:e68–e75.
Sample PA, Girkin CA, Zangwill LM, et al. The African Descent and Glaucoma Evaluation Study (ADAGES): design and baseline data. Arch Ophthalmol. 2009;127:1136–1145.
Park SC, De Moraes CG, Teng CC, et al. Initial parafoveal versus peripheral scotomas in glaucoma: risk factors and visual field characteristics. Ophthalmology. 2011;118:1782–1789.
Brusini P, Johnson CA. Staging functional damage in glaucoma: review of different classification methods. Surv Ophthalmol. 2007;52:156–179.
Qiu M, Wang SY, Singh K, et al. Association between visual field defects and quality of life in the United States. Ophthalmology. 2014;121:733–740.
Garg A, De Moraes CG, Cioffi GA, et al. Baseline 24-2 central visual field damage is predictive of global progressive field loss. Am J Ophthalmol. 2018;187:92–98.
Heijl A, Patella VM, Bengtsson B. The field analyzer primer: effective perimetry, 4th ed. Dublin, CA: Carl Zeiss Meditec; 2012.