The impact of ultra-high-density mapping on long-term outcome after catheter ablation of ventricular tachycardia.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
01 06 2022
01 06 2022
Historique:
received:
12
12
2021
accepted:
18
05
2022
entrez:
1
6
2022
pubmed:
2
6
2022
medline:
7
6
2022
Statut:
epublish
Résumé
Ultra-high-density (UHD) mapping can improve scar area detection and fast activation mapping in patients undergoing catheter ablation of ventricular tachycardia (VT). The aim of the present study was to compare the outcome after VT ablation guided by UHD and conventional point-by-point 3D-mapping. The acute and long-term ablation outcome of 61 consecutive patients with UHD mapping (64-electrode mini-basket catheter) was compared to 61 consecutive patients with conventional point-by-point 3D-mapping using a 3.5 mm tip catheter. Patients, whose ablation was guided by UHD mapping had an improved 24-months outcome in comparison to patients with conventional mapping (cumulative incidence estimate of the combination of recurrence or disease-related death of 52.4% (95% confidence interval (CI) [36.9-65.7]; recurrence: n = 25; disease-related death: n = 4) versus 69.6% (95% CI [55.9-79.8]); recurrence: n = 31; disease-related death n = 11). In a cause-specific Cox proportional hazards model, UHD mapping (hazard ratio (HR) 0.623; 95% CI [0.390-0.995]; P = 0.048) and left ventricular ejection fraction > 30% (HR 0.485; 95% CI [0.290-0.813]; P = 0.006) were independently associated with lower rates of recurrence or disease-related death. Other procedural parameters were similar in both groups. In conclusion, UHD mapping during VT ablation was associated with fewer VT recurrences or disease-related deaths during long-term follow-up in comparison to conventional point-by-point mapping. Complication rates and other procedural parameters were similar in both groups.
Identifiants
pubmed: 35650230
doi: 10.1038/s41598-022-12918-7
pii: 10.1038/s41598-022-12918-7
pmc: PMC9160260
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
9139Informations de copyright
© 2022. The Author(s).
Références
Circ Arrhythm Electrophysiol. 2015 Aug;8(4):863-73
pubmed: 26022186
Clin Res Cardiol. 2022 May;111(5):530-540
pubmed: 34318341
Circulation. 2012 May 8;125(18):2184-96
pubmed: 22492578
Heart Rhythm. 2015 Sep;12(9):1927-34
pubmed: 26001505
Heart Rhythm. 2017 Feb;14(2):176-183
pubmed: 27867071
J Cardiovasc Electrophysiol. 2017 Nov;28(11):1306-1315
pubmed: 28744991
N Engl J Med. 2008 Sep 4;359(10):1009-17
pubmed: 18768944
Circ Arrhythm Electrophysiol. 2016 Jul;9(7):
pubmed: 27406604
J Cardiovasc Electrophysiol. 2021 Feb;32(2):376-388
pubmed: 33368769
JACC Clin Electrophysiol. 2019 Jan;5(1):66-77
pubmed: 30678788
J Cardiovasc Electrophysiol. 2015 Apr;26(4):464-471
pubmed: 25328104
Circ Arrhythm Electrophysiol. 2014 Aug;7(4):677-83
pubmed: 24879789
JACC Clin Electrophysiol. 2019 Oct;5(10):1130-1140
pubmed: 31648737
Circ Arrhythm Electrophysiol. 2016 Jun;9(6):
pubmed: 27307518
Heart Rhythm. 2018 Oct;15(10):e73-e189
pubmed: 29097319
Clin Res Cardiol. 2020 Oct;109(10):1292-1306
pubmed: 32236716
Clin Res Cardiol. 2019 Oct;108(10):1074-1082
pubmed: 30788621
J Cardiovasc Electrophysiol. 2017 Sep;28(9):1058-1067
pubmed: 28597532
Circ Arrhythm Electrophysiol. 2018 Dec;11(12):e006730
pubmed: 30562104
Circ Arrhythm Electrophysiol. 2014 Feb;7(1):90-8
pubmed: 24382409
Europace. 2019 Apr 1;21(4):655-661
pubmed: 30815690
Europace. 2018 Mar 1;20(3):512-519
pubmed: 28069835
J Cardiovasc Electrophysiol. 2015 Nov;26(11):1213-1223
pubmed: 26198475
J Am Coll Cardiol. 2012 Jul 10;60(2):132-41
pubmed: 22766340
Int J Cardiol. 2015 Mar 1;182:56-61
pubmed: 25576719
Clin Res Cardiol. 2020 Oct;109(10):1282-1291
pubmed: 32157380
J Interv Card Electrophysiol. 2013 Apr;36(3):233-42
pubmed: 23179916