Clonal dynamics of haematopoiesis across the human lifespan.
Adolescent
Adult
Aged
Aged, 80 and over
Aging
/ genetics
Child
Child, Preschool
Clonal Hematopoiesis
/ genetics
Clone Cells
/ cytology
Female
Hematologic Neoplasms
/ genetics
Hematopoietic Stem Cells
/ cytology
Humans
Infant
Infant, Newborn
Longevity
Male
Middle Aged
Multipotent Stem Cells
/ cytology
Young Adult
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
06 2022
06 2022
Historique:
received:
16
08
2021
accepted:
19
04
2022
pubmed:
2
6
2022
medline:
11
6
2022
entrez:
1
6
2022
Statut:
ppublish
Résumé
Age-related change in human haematopoiesis causes reduced regenerative capacity
Identifiants
pubmed: 35650442
doi: 10.1038/s41586-022-04786-y
pii: 10.1038/s41586-022-04786-y
pmc: PMC9177428
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
343-350Subventions
Organisme : Medical Research Council
ID : MC_PC_17230
Pays : United Kingdom
Organisme : Wellcome Trust
ID : WT088340MA
Pays : United Kingdom
Organisme : European Research Council
ID : ERC-2016-STG-715371
Pays : International
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2022. The Author(s).
Références
Harrison, D. E. Loss of stem cell repopulating ability upon transplantation. Effects of donor age, cell number, and transplantation procedure. J. Exp. Med. 156, 1767–1779 (1982).
pubmed: 6129277
doi: 10.1084/jem.156.6.1767
Guralnik, J. M., Eisenstaedt, R. S., Ferrucci, L., Klein, H. G. & Woodman, R. C. Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia. Blood 104, 2263–2268 (2004).
pubmed: 15238427
doi: 10.1182/blood-2004-05-1812
Castle, S. C. Clinical relevance of age-related immune dysfunction. Clin. Infect. Dis. 31, 578–585 (2000).
pubmed: 10987724
doi: 10.1086/313947
Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).
pubmed: 25426838
pmcid: 4290021
doi: 10.1056/NEJMoa1409405
Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).
pubmed: 25426837
pmcid: 4306669
doi: 10.1056/NEJMoa1408617
Abelson, S. et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature 559, 400–404 (2018).
pubmed: 29988082
pmcid: 6485381
doi: 10.1038/s41586-018-0317-6
Jones, O. R. et al. Diversity of ageing across the tree of life. Nature 505, 169–173 (2014).
pubmed: 24317695
doi: 10.1038/nature12789
Edwards, R. D. & Tuljapurkar, S. Inequality in life spans and a new perspective on mortality convergence across industrialized countries. Popul. Dev. Rev. 31, 645–674 (2005).
doi: 10.1111/j.1728-4457.2005.00092.x
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).
pubmed: 23746838
pmcid: 3836174
doi: 10.1016/j.cell.2013.05.039
Mckerrell, T. et al. Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep. 10, 1239–1245 (2015).
pubmed: 25732814
pmcid: 4542313
doi: 10.1016/j.celrep.2015.02.005
Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20, 1472–1478 (2014).
pubmed: 25326804
pmcid: 4313872
doi: 10.1038/nm.3733
Busque, L. et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat. Genet. 44, 1179–1181 (2012).
pubmed: 23001125
pmcid: 3483435
doi: 10.1038/ng.2413
Young, A. L., Challen, G. A., Birmann, B. M. & Druley, T. E. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat. Commun. 7, 12484 (2016).
pubmed: 27546487
pmcid: 4996934
doi: 10.1038/ncomms12484
Zink, F. et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 130, 742–752 (2017).
pubmed: 28483762
pmcid: 5553576
doi: 10.1182/blood-2017-02-769869
Pich, O., Reyes-Salazar, I., Gonzalez-Perez, A. & Lopez-Bigas, N. Discovering the drivers of clonal hematopoiesis. Preprint at https://doi.org/10.1101/2020.10.22.350140 (2020).
Poon, G. Y. P., Watson, C. J., Fisher, D. S. & Blundell, J. R. Synonymous mutations reveal genome-wide levels of positive selection in healthy tissues. Nat. Genet. 53, 1597–1605 (2021).
pubmed: 34737428
doi: 10.1038/s41588-021-00957-1
Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic mutations. Nature 561, 473–478 (2018).
pubmed: 30185910
pmcid: 6163040
doi: 10.1038/s41586-018-0497-0
Osorio, F. G. et al. Somatic mutations reveal lineage relationships and age-related mutagenesis in human hematopoiesis. Cell Rep. 25, 2308–2316.e4 (2018).
pubmed: 30485801
pmcid: 6289083
doi: 10.1016/j.celrep.2018.11.014
de Kanter, J. K. et al. Antiviral treatment causes a unique mutational signature in cancers of transplantation recipients. Cell Stem Cell 28, 1726–1739.e6 (2021).
pubmed: 34496298
pmcid: 8516432
doi: 10.1016/j.stem.2021.07.012
Schoenmakers, E. et al. Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J. Clin. Invest. 120, 4220–4235 (2010).
pubmed: 21084748
pmcid: 2993594
doi: 10.1172/JCI43653
Spencer Chapman, M. et al. Lineage tracing of human development through somatic mutations. Nature 595, 85–90 (2021).
pubmed: 33981037
doi: 10.1038/s41586-021-03548-6
Welch, J. S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).
pubmed: 22817890
pmcid: 3407563
doi: 10.1016/j.cell.2012.06.023
Danielsson, M. et al. Longitudinal changes in the frequency of mosaic chromosome Y loss in peripheral blood cells of aging men varies profoundly between individuals. Eur. J. Hum. Genet. 28, 349–357 (2020).
pubmed: 31654039
doi: 10.1038/s41431-019-0533-z
Aubert, G., Baerlocher, G. M., Vulto, I., Poon, S. S. & Lansdorp, P. M. Collapse of telomere homeostasis in hematopoietic cells caused by heterozygous mutations in telomerase genes. PLoS Genet. 8, 1002696 (2012).
doi: 10.1371/journal.pgen.1002696
Rufer, N. et al. Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J. Exp. Med. 190, 157–167 (1999).
pubmed: 10432279
pmcid: 2195579
doi: 10.1084/jem.190.2.157
Bernitz, J. M., Kim, H. S., MacArthur, B., Sieburg, H. & Moore, K. Hematopoietic stem cells count and remember self-renewal divisions. Cell 167, 1296–1309.e10 (2016).
pubmed: 27839867
pmcid: 5115957
doi: 10.1016/j.cell.2016.10.022
Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008).
pubmed: 19062086
doi: 10.1016/j.cell.2008.10.048
Bolton, K. L. et al. Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat. Genet. 52, 1219–1226 (2020).
pubmed: 33106634
pmcid: 7891089
doi: 10.1038/s41588-020-00710-0
Karcher, M. D., Palacios, J. A., Lan, S. & Minin, V. N. phylodyn: an R package for phylodynamic simulation and inference. Mol. Ecol. Resour. 17, 96–100 (2017).
pubmed: 27801980
doi: 10.1111/1755-0998.12630
Watson, C. J. et al. The evolutionary dynamics and fitness landscape of clonal hematopoiesis. Science 367, 1449–1454 (2020).
pubmed: 32217721
doi: 10.1126/science.aay9333
Catlin, S. N., Busque, L., Gale, R. E., Guttorp, P. & Abkowitz, J. L. The replication rate of human hematopoietic stem cells in vivo. Blood 117, 4460–4466 (2011).
pubmed: 21343613
pmcid: 3099568
doi: 10.1182/blood-2010-08-303537
Vaziri, H. et al. Evidence for a mitotic clock in human hematopoietic stem cells: Loss of telomeric DNA with age. Proc. Natl Acad. Sci. USA 91, 9857–9860 (1994).
pubmed: 7937905
pmcid: 44916
doi: 10.1073/pnas.91.21.9857
Barile, M. et al. Hematopoietic stem cells self-renew symmetrically or gradually proceed to differentiation. Preprint at https://doi.org/10.1101/2020.08.06.239186 (2020).
Ito, K. et al. Self-renewal of a purified Tie2
pubmed: 27738012
pmcid: 5164878
doi: 10.1126/science.aaf5530
Sun, J. et al. Clonal dynamics of native haematopoiesis. Nature 514, 322–327 (2014).
pubmed: 25296256
pmcid: 4408613
doi: 10.1038/nature13824
Busch, K. et al. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518, 542–546 (2015).
pubmed: 25686605
doi: 10.1038/nature14242
Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041.e21 (2017).
pubmed: 29056346
pmcid: 5720395
doi: 10.1016/j.cell.2017.09.042
Duncavage, E. J. et al. Genome sequencing as an alternative to cytogenetic analysis in myeloid cancers. N. Engl. J. Med. 384, 924–935 (2021).
pubmed: 33704937
pmcid: 8130455
doi: 10.1056/NEJMoa2024534
Klco, J. M. et al. Association between mutation clearance after induction therapy and outcomes in acute myeloid leukemia. J. Am. Med. Assoc. 314, 811–822 (2015).
doi: 10.1001/jama.2015.9643
Gozdecka, M. et al. UTX-mediated enhancer and chromatin remodeling suppresses myeloid leukemogenesis through noncatalytic inverse regulation of ETS and GATA programs. Nat. Genet. 50, 883–894 (2018).
pubmed: 29736013
pmcid: 6029661
doi: 10.1038/s41588-018-0114-z
Ng, S. W. K. et al. Convergent somatic mutations in metabolism genes in chronic liver disease. Nature 598, 473–478 (2021).
pubmed: 34646017
doi: 10.1038/s41586-021-03974-6
Kirkwood, T. B. L. & Melov, S. On the programmed/non-programmed nature of ageing within the life history. Curr. Biol. 21, R701–R707 (2011).
pubmed: 21959160
doi: 10.1016/j.cub.2011.07.020
Martincorena, I. et al. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).
pubmed: 25999502
pmcid: 4471149
doi: 10.1126/science.aaa6806
Yoshida, K. et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578, 266–272 (2020).
pubmed: 31996850
pmcid: 7021511
doi: 10.1038/s41586-020-1961-1
Moore, L. et al. The mutational landscape of normal human endometrial epithelium. Nature 580, 640–646 (2020).
pubmed: 32350471
doi: 10.1038/s41586-020-2214-z
Suda, K. et al. Clonal expansion and diversification of cancer-associated mutations in endometriosis and normal endometrium. Cell Rep. 24, 1777–1789 (2018).
pubmed: 30110635
doi: 10.1016/j.celrep.2018.07.037
Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 917, 911–917 (2018).
doi: 10.1126/science.aau3879
Yokoyama, A. et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature 565, 312–317 (2019).
pubmed: 30602793
doi: 10.1038/s41586-018-0811-x
Ganuza, M. et al. The global clonal complexity of the murine blood system declines throughout life and after serial transplantation. Blood 133, 1927–1942 (2019).
pubmed: 30782612
pmcid: 6497513
doi: 10.1182/blood-2018-09-873059
Yu, K. R. et al. The impact of aging on primate hematopoiesis as interrogated by clonal tracking. Blood 131, 1195–1205 (2018).
pubmed: 29295845
pmcid: 5855019
doi: 10.1182/blood-2017-08-802033
Notta, F. et al. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 333, 218–221 (2011).
pubmed: 21737740
doi: 10.1126/science.1201219
Huntsman, H. D. et al. Human hematopoietic stem cells from mobilized peripheral blood can be purified based on CD49f integrin expression. Blood 126, 1631–1633 (2015).
pubmed: 26405217
pmcid: 4582339
doi: 10.1182/blood-2015-07-660670
Laurenti, E. et al. CDK6 levels regulate quiescence exit in human hematopoietic stem cells. Cell Stem Cell 16, 302 (2015).
pubmed: 25704240
pmcid: 4359055
doi: 10.1016/j.stem.2015.01.017
Notta, F. et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 351, aab2116 (2015).
pubmed: 26541609
pmcid: 4816201
doi: 10.1126/science.aab2116
Ellis, P. et al. Reliable detection of somatic mutations in solid tissues by laser-capture microdissection and low-input DNA sequencing. Nat. Protoc. 16, 841–871 (2021).
pubmed: 33318691
doi: 10.1038/s41596-020-00437-6
Jones, D. et al. cgpCaVEManWrapper: simple execution of CaVEMan in order to detect somatic single nucleotide variants in NGS data. Curr. Protoc. Bioinformatics 56, 15.10.1–15.10.18 (2016).
doi: 10.1002/cpbi.20
Raine, K. M. et al. cgpPindel: identifying somatically acquired insertion and deletion events from paired end sequencing. Curr. Protoc. Bioinformatics 52, 15.7.1–15.7.12 (2015).
doi: 10.1002/0471250953.bi1507s52
Coorens, T. H. H. et al. Extensive phylogenies of human development inferred from somatic mutations. Nature 597, 387–392 (2021).
pubmed: 34433963
doi: 10.1038/s41586-021-03790-y
Cameron, D. L. et al. GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly. Genome Res. 27, 2050–2060 (2017).
pubmed: 29097403
pmcid: 5741059
doi: 10.1101/gr.222109.117
Van Loo, P. et al. Allele-specific copy number analysis of tumors. Proc. Natl Acad. Sci. USA 107, 16910–16915 (2010).
pubmed: 20837533
pmcid: 2947907
doi: 10.1073/pnas.1009843107
Campbell, P. J. et al. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat. Genet. 40, 722–729 (2008).
pubmed: 18438408
pmcid: 2705838
doi: 10.1038/ng.128
Farmery, J. H. R. et al. Telomerecat: a ploidy-agnostic method for estimating telomere length from whole genome sequencing data. Sci. Rep. 8, 1300 (2018).
pubmed: 29358629
pmcid: 5778012
doi: 10.1038/s41598-017-14403-y
Frenck, R. W., Blackburn, E. H. & Shannon, K. M. The rate of telomere sequence loss in human leukocytes varies with age. Proc. Natl Acad. Sci. USA 95, 5607–5610 (1998).
pubmed: 9576930
pmcid: 20425
doi: 10.1073/pnas.95.10.5607
Thi Hoang, D. et al. MPBoot: fast phylogenetic maximum parsimony tree inference and bootstrap approximation. BMC Ecol. Evol. 18, 11 (2018).
Lan, S., Palacios, J. A., Karcher, M., Minin, V. N. & Shahbaba, B. An efficient Bayesian inference framework for coalescent-based nonparametric phylodynamics. Bioinformatics 31, 3282–3289 (2015).
pubmed: 26093147
pmcid: 4795633
doi: 10.1093/bioinformatics/btv378
Lee-Six, H. & Kent, D. G. Tracking hematopoietic stem cells and their progeny using whole-genome sequencing. Exp. Hematol. 83, 12–24 (2020).
pubmed: 32007478
pmcid: 7118367
doi: 10.1016/j.exphem.2020.01.004
Williams, N. et al. Phylogenetic reconstruction of myeloproliferative neoplasm reveals very early origins and lifelong evolution. Preprint at https://doi.org/10.1101/2020.11.09.374710 (2020).
Csilléry, K., François, O. & Blum, M. G. B. Abc: An R package for approximate Bayesian computation (ABC). Methods Ecol. Evol. 3, 475–479 (2012).
doi: 10.1111/j.2041-210X.2011.00179.x
Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian computation in population. genetics. Genetics 162, 2025–2035 (2002).
pubmed: 12524368
doi: 10.1093/genetics/162.4.2025
Gelman, A. et al. Bayesian Data Analysis (CRC Press, 2004).
Rheinbay, E. et al. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature 578, 102–111 (2020).
pubmed: 32025015
pmcid: 7054214
doi: 10.1038/s41586-020-1965-x
Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).
pubmed: 23770567
pmcid: 3919509
doi: 10.1038/nature12213
Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).
pubmed: 32025018
pmcid: 7054213
doi: 10.1038/s41586-020-1943-3
Vaser, R., Adusumalli, S., Ngak Leng, S., Sikic, M. & Ng, P. C. SIFT missense predictions for genomes. Nat. Protoc. 11, 1–9 (2016).
pubmed: 26633127
doi: 10.1038/nprot.2015.123
Adzhubei, I., Jordan, D. M. & Sunyaev, S. R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. https://doi.org/10.1002/0471142905.hg0720s76 (2013).
Nei, M. & Gojobori, T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3, 418–426 (1986).
pubmed: 3444411
Greenman, C., Wooster, R., Futreal, P. A., Stratton, M. R. & Easton, D. F. Statistical analysis of pathogenicity of somatic mutations in cancer. Genetics 173, 2187–2198 (2006).
pubmed: 16783027
pmcid: 1569711
doi: 10.1534/genetics.105.044677
Fabre, M. A. et al. The longitudinal dynamics and natural history of clonal haematopoiesis. Nature https://doi.org/10.1038/s41586-022-04785-z (2022).
The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).
pmcid: 3767041
doi: 10.1056/NEJMoa1301689