Clonal dynamics of haematopoiesis across the human lifespan.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
06 2022
Historique:
received: 16 08 2021
accepted: 19 04 2022
pubmed: 2 6 2022
medline: 11 6 2022
entrez: 1 6 2022
Statut: ppublish

Résumé

Age-related change in human haematopoiesis causes reduced regenerative capacity

Identifiants

pubmed: 35650442
doi: 10.1038/s41586-022-04786-y
pii: 10.1038/s41586-022-04786-y
pmc: PMC9177428
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

343-350

Subventions

Organisme : Medical Research Council
ID : MC_PC_17230
Pays : United Kingdom
Organisme : Wellcome Trust
ID : WT088340MA
Pays : United Kingdom
Organisme : European Research Council
ID : ERC-2016-STG-715371
Pays : International

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2022. The Author(s).

Références

Harrison, D. E. Loss of stem cell repopulating ability upon transplantation. Effects of donor age, cell number, and transplantation procedure. J. Exp. Med. 156, 1767–1779 (1982).
pubmed: 6129277 doi: 10.1084/jem.156.6.1767
Guralnik, J. M., Eisenstaedt, R. S., Ferrucci, L., Klein, H. G. & Woodman, R. C. Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia. Blood 104, 2263–2268 (2004).
pubmed: 15238427 doi: 10.1182/blood-2004-05-1812
Castle, S. C. Clinical relevance of age-related immune dysfunction. Clin. Infect. Dis. 31, 578–585 (2000).
pubmed: 10987724 doi: 10.1086/313947
Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).
pubmed: 25426838 pmcid: 4290021 doi: 10.1056/NEJMoa1409405
Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).
pubmed: 25426837 pmcid: 4306669 doi: 10.1056/NEJMoa1408617
Abelson, S. et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature 559, 400–404 (2018).
pubmed: 29988082 pmcid: 6485381 doi: 10.1038/s41586-018-0317-6
Jones, O. R. et al. Diversity of ageing across the tree of life. Nature 505, 169–173 (2014).
pubmed: 24317695 doi: 10.1038/nature12789
Edwards, R. D. & Tuljapurkar, S. Inequality in life spans and a new perspective on mortality convergence across industrialized countries. Popul. Dev. Rev. 31, 645–674 (2005).
doi: 10.1111/j.1728-4457.2005.00092.x
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).
pubmed: 23746838 pmcid: 3836174 doi: 10.1016/j.cell.2013.05.039
Mckerrell, T. et al. Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep. 10, 1239–1245 (2015).
pubmed: 25732814 pmcid: 4542313 doi: 10.1016/j.celrep.2015.02.005
Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20, 1472–1478 (2014).
pubmed: 25326804 pmcid: 4313872 doi: 10.1038/nm.3733
Busque, L. et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat. Genet. 44, 1179–1181 (2012).
pubmed: 23001125 pmcid: 3483435 doi: 10.1038/ng.2413
Young, A. L., Challen, G. A., Birmann, B. M. & Druley, T. E. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat. Commun. 7, 12484 (2016).
pubmed: 27546487 pmcid: 4996934 doi: 10.1038/ncomms12484
Zink, F. et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 130, 742–752 (2017).
pubmed: 28483762 pmcid: 5553576 doi: 10.1182/blood-2017-02-769869
Pich, O., Reyes-Salazar, I., Gonzalez-Perez, A. & Lopez-Bigas, N. Discovering the drivers of clonal hematopoiesis. Preprint at https://doi.org/10.1101/2020.10.22.350140 (2020).
Poon, G. Y. P., Watson, C. J., Fisher, D. S. & Blundell, J. R. Synonymous mutations reveal genome-wide levels of positive selection in healthy tissues. Nat. Genet. 53, 1597–1605 (2021).
pubmed: 34737428 doi: 10.1038/s41588-021-00957-1
Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic mutations. Nature 561, 473–478 (2018).
pubmed: 30185910 pmcid: 6163040 doi: 10.1038/s41586-018-0497-0
Osorio, F. G. et al. Somatic mutations reveal lineage relationships and age-related mutagenesis in human hematopoiesis. Cell Rep. 25, 2308–2316.e4 (2018).
pubmed: 30485801 pmcid: 6289083 doi: 10.1016/j.celrep.2018.11.014
de Kanter, J. K. et al. Antiviral treatment causes a unique mutational signature in cancers of transplantation recipients. Cell Stem Cell 28, 1726–1739.e6 (2021).
pubmed: 34496298 pmcid: 8516432 doi: 10.1016/j.stem.2021.07.012
Schoenmakers, E. et al. Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J. Clin. Invest. 120, 4220–4235 (2010).
pubmed: 21084748 pmcid: 2993594 doi: 10.1172/JCI43653
Spencer Chapman, M. et al. Lineage tracing of human development through somatic mutations. Nature 595, 85–90 (2021).
pubmed: 33981037 doi: 10.1038/s41586-021-03548-6
Welch, J. S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).
pubmed: 22817890 pmcid: 3407563 doi: 10.1016/j.cell.2012.06.023
Danielsson, M. et al. Longitudinal changes in the frequency of mosaic chromosome Y loss in peripheral blood cells of aging men varies profoundly between individuals. Eur. J. Hum. Genet. 28, 349–357 (2020).
pubmed: 31654039 doi: 10.1038/s41431-019-0533-z
Aubert, G., Baerlocher, G. M., Vulto, I., Poon, S. S. & Lansdorp, P. M. Collapse of telomere homeostasis in hematopoietic cells caused by heterozygous mutations in telomerase genes. PLoS Genet. 8, 1002696 (2012).
doi: 10.1371/journal.pgen.1002696
Rufer, N. et al. Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J. Exp. Med. 190, 157–167 (1999).
pubmed: 10432279 pmcid: 2195579 doi: 10.1084/jem.190.2.157
Bernitz, J. M., Kim, H. S., MacArthur, B., Sieburg, H. & Moore, K. Hematopoietic stem cells count and remember self-renewal divisions. Cell 167, 1296–1309.e10 (2016).
pubmed: 27839867 pmcid: 5115957 doi: 10.1016/j.cell.2016.10.022
Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008).
pubmed: 19062086 doi: 10.1016/j.cell.2008.10.048
Bolton, K. L. et al. Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat. Genet. 52, 1219–1226 (2020).
pubmed: 33106634 pmcid: 7891089 doi: 10.1038/s41588-020-00710-0
Karcher, M. D., Palacios, J. A., Lan, S. & Minin, V. N. phylodyn: an R package for phylodynamic simulation and inference. Mol. Ecol. Resour. 17, 96–100 (2017).
pubmed: 27801980 doi: 10.1111/1755-0998.12630
Watson, C. J. et al. The evolutionary dynamics and fitness landscape of clonal hematopoiesis. Science 367, 1449–1454 (2020).
pubmed: 32217721 doi: 10.1126/science.aay9333
Catlin, S. N., Busque, L., Gale, R. E., Guttorp, P. & Abkowitz, J. L. The replication rate of human hematopoietic stem cells in vivo. Blood 117, 4460–4466 (2011).
pubmed: 21343613 pmcid: 3099568 doi: 10.1182/blood-2010-08-303537
Vaziri, H. et al. Evidence for a mitotic clock in human hematopoietic stem cells: Loss of telomeric DNA with age. Proc. Natl Acad. Sci. USA 91, 9857–9860 (1994).
pubmed: 7937905 pmcid: 44916 doi: 10.1073/pnas.91.21.9857
Barile, M. et al. Hematopoietic stem cells self-renew symmetrically or gradually proceed to differentiation. Preprint at https://doi.org/10.1101/2020.08.06.239186 (2020).
Ito, K. et al. Self-renewal of a purified Tie2
pubmed: 27738012 pmcid: 5164878 doi: 10.1126/science.aaf5530
Sun, J. et al. Clonal dynamics of native haematopoiesis. Nature 514, 322–327 (2014).
pubmed: 25296256 pmcid: 4408613 doi: 10.1038/nature13824
Busch, K. et al. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518, 542–546 (2015).
pubmed: 25686605 doi: 10.1038/nature14242
Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041.e21 (2017).
pubmed: 29056346 pmcid: 5720395 doi: 10.1016/j.cell.2017.09.042
Duncavage, E. J. et al. Genome sequencing as an alternative to cytogenetic analysis in myeloid cancers. N. Engl. J. Med. 384, 924–935 (2021).
pubmed: 33704937 pmcid: 8130455 doi: 10.1056/NEJMoa2024534
Klco, J. M. et al. Association between mutation clearance after induction therapy and outcomes in acute myeloid leukemia. J. Am. Med. Assoc. 314, 811–822 (2015).
doi: 10.1001/jama.2015.9643
Gozdecka, M. et al. UTX-mediated enhancer and chromatin remodeling suppresses myeloid leukemogenesis through noncatalytic inverse regulation of ETS and GATA programs. Nat. Genet. 50, 883–894 (2018).
pubmed: 29736013 pmcid: 6029661 doi: 10.1038/s41588-018-0114-z
Ng, S. W. K. et al. Convergent somatic mutations in metabolism genes in chronic liver disease. Nature 598, 473–478 (2021).
pubmed: 34646017 doi: 10.1038/s41586-021-03974-6
Kirkwood, T. B. L. & Melov, S. On the programmed/non-programmed nature of ageing within the life history. Curr. Biol. 21, R701–R707 (2011).
pubmed: 21959160 doi: 10.1016/j.cub.2011.07.020
Martincorena, I. et al. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).
pubmed: 25999502 pmcid: 4471149 doi: 10.1126/science.aaa6806
Yoshida, K. et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578, 266–272 (2020).
pubmed: 31996850 pmcid: 7021511 doi: 10.1038/s41586-020-1961-1
Moore, L. et al. The mutational landscape of normal human endometrial epithelium. Nature 580, 640–646 (2020).
pubmed: 32350471 doi: 10.1038/s41586-020-2214-z
Suda, K. et al. Clonal expansion and diversification of cancer-associated mutations in endometriosis and normal endometrium. Cell Rep. 24, 1777–1789 (2018).
pubmed: 30110635 doi: 10.1016/j.celrep.2018.07.037
Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 917, 911–917 (2018).
doi: 10.1126/science.aau3879
Yokoyama, A. et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature 565, 312–317 (2019).
pubmed: 30602793 doi: 10.1038/s41586-018-0811-x
Ganuza, M. et al. The global clonal complexity of the murine blood system declines throughout life and after serial transplantation. Blood 133, 1927–1942 (2019).
pubmed: 30782612 pmcid: 6497513 doi: 10.1182/blood-2018-09-873059
Yu, K. R. et al. The impact of aging on primate hematopoiesis as interrogated by clonal tracking. Blood 131, 1195–1205 (2018).
pubmed: 29295845 pmcid: 5855019 doi: 10.1182/blood-2017-08-802033
Notta, F. et al. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 333, 218–221 (2011).
pubmed: 21737740 doi: 10.1126/science.1201219
Huntsman, H. D. et al. Human hematopoietic stem cells from mobilized peripheral blood can be purified based on CD49f integrin expression. Blood 126, 1631–1633 (2015).
pubmed: 26405217 pmcid: 4582339 doi: 10.1182/blood-2015-07-660670
Laurenti, E. et al. CDK6 levels regulate quiescence exit in human hematopoietic stem cells. Cell Stem Cell 16, 302 (2015).
pubmed: 25704240 pmcid: 4359055 doi: 10.1016/j.stem.2015.01.017
Notta, F. et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 351, aab2116 (2015).
pubmed: 26541609 pmcid: 4816201 doi: 10.1126/science.aab2116
Ellis, P. et al. Reliable detection of somatic mutations in solid tissues by laser-capture microdissection and low-input DNA sequencing. Nat. Protoc. 16, 841–871 (2021).
pubmed: 33318691 doi: 10.1038/s41596-020-00437-6
Jones, D. et al. cgpCaVEManWrapper: simple execution of CaVEMan in order to detect somatic single nucleotide variants in NGS data. Curr. Protoc. Bioinformatics 56, 15.10.1–15.10.18 (2016).
doi: 10.1002/cpbi.20
Raine, K. M. et al. cgpPindel: identifying somatically acquired insertion and deletion events from paired end sequencing. Curr. Protoc. Bioinformatics 52, 15.7.1–15.7.12 (2015).
doi: 10.1002/0471250953.bi1507s52
Coorens, T. H. H. et al. Extensive phylogenies of human development inferred from somatic mutations. Nature 597, 387–392 (2021).
pubmed: 34433963 doi: 10.1038/s41586-021-03790-y
Cameron, D. L. et al. GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly. Genome Res. 27, 2050–2060 (2017).
pubmed: 29097403 pmcid: 5741059 doi: 10.1101/gr.222109.117
Van Loo, P. et al. Allele-specific copy number analysis of tumors. Proc. Natl Acad. Sci. USA 107, 16910–16915 (2010).
pubmed: 20837533 pmcid: 2947907 doi: 10.1073/pnas.1009843107
Campbell, P. J. et al. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat. Genet. 40, 722–729 (2008).
pubmed: 18438408 pmcid: 2705838 doi: 10.1038/ng.128
Farmery, J. H. R. et al. Telomerecat: a ploidy-agnostic method for estimating telomere length from whole genome sequencing data. Sci. Rep. 8, 1300 (2018).
pubmed: 29358629 pmcid: 5778012 doi: 10.1038/s41598-017-14403-y
Frenck, R. W., Blackburn, E. H. & Shannon, K. M. The rate of telomere sequence loss in human leukocytes varies with age. Proc. Natl Acad. Sci. USA 95, 5607–5610 (1998).
pubmed: 9576930 pmcid: 20425 doi: 10.1073/pnas.95.10.5607
Thi Hoang, D. et al. MPBoot: fast phylogenetic maximum parsimony tree inference and bootstrap approximation. BMC Ecol. Evol. 18, 11 (2018).
Lan, S., Palacios, J. A., Karcher, M., Minin, V. N. & Shahbaba, B. An efficient Bayesian inference framework for coalescent-based nonparametric phylodynamics. Bioinformatics 31, 3282–3289 (2015).
pubmed: 26093147 pmcid: 4795633 doi: 10.1093/bioinformatics/btv378
Lee-Six, H. & Kent, D. G. Tracking hematopoietic stem cells and their progeny using whole-genome sequencing. Exp. Hematol. 83, 12–24 (2020).
pubmed: 32007478 pmcid: 7118367 doi: 10.1016/j.exphem.2020.01.004
Williams, N. et al. Phylogenetic reconstruction of myeloproliferative neoplasm reveals very early origins and lifelong evolution. Preprint at https://doi.org/10.1101/2020.11.09.374710 (2020).
Csilléry, K., François, O. & Blum, M. G. B. Abc: An R package for approximate Bayesian computation (ABC). Methods Ecol. Evol. 3, 475–479 (2012).
doi: 10.1111/j.2041-210X.2011.00179.x
Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian computation in population. genetics. Genetics 162, 2025–2035 (2002).
pubmed: 12524368 doi: 10.1093/genetics/162.4.2025
Gelman, A. et al. Bayesian Data Analysis (CRC Press, 2004).
Rheinbay, E. et al. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature 578, 102–111 (2020).
pubmed: 32025015 pmcid: 7054214 doi: 10.1038/s41586-020-1965-x
Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).
pubmed: 23770567 pmcid: 3919509 doi: 10.1038/nature12213
Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).
pubmed: 32025018 pmcid: 7054213 doi: 10.1038/s41586-020-1943-3
Vaser, R., Adusumalli, S., Ngak Leng, S., Sikic, M. & Ng, P. C. SIFT missense predictions for genomes. Nat. Protoc. 11, 1–9 (2016).
pubmed: 26633127 doi: 10.1038/nprot.2015.123
Adzhubei, I., Jordan, D. M. & Sunyaev, S. R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. https://doi.org/10.1002/0471142905.hg0720s76 (2013).
Nei, M. & Gojobori, T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3, 418–426 (1986).
pubmed: 3444411
Greenman, C., Wooster, R., Futreal, P. A., Stratton, M. R. & Easton, D. F. Statistical analysis of pathogenicity of somatic mutations in cancer. Genetics 173, 2187–2198 (2006).
pubmed: 16783027 pmcid: 1569711 doi: 10.1534/genetics.105.044677
Fabre, M. A. et al. The longitudinal dynamics and natural history of clonal haematopoiesis. Nature https://doi.org/10.1038/s41586-022-04785-z (2022).
The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).
pmcid: 3767041 doi: 10.1056/NEJMoa1301689

Auteurs

Emily Mitchell (E)

Wellcome Sanger Institute, Hinxton, UK.
Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.
Department of Haematology, University of Cambridge, Cambridge, UK.

Michael Spencer Chapman (M)

Wellcome Sanger Institute, Hinxton, UK.

Nicholas Williams (N)

Wellcome Sanger Institute, Hinxton, UK.

Kevin J Dawson (KJ)

Wellcome Sanger Institute, Hinxton, UK.

Nicole Mende (N)

Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.

Emily F Calderbank (EF)

Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.

Hyunchul Jung (H)

Wellcome Sanger Institute, Hinxton, UK.

Thomas Mitchell (T)

Wellcome Sanger Institute, Hinxton, UK.

Tim H H Coorens (THH)

Wellcome Sanger Institute, Hinxton, UK.

David H Spencer (DH)

Department of Medicine, McDonnell Genome Institute, Washington University, St Louis, MO, USA.

Heather Machado (H)

Wellcome Sanger Institute, Hinxton, UK.

Henry Lee-Six (H)

Wellcome Sanger Institute, Hinxton, UK.

Megan Davies (M)

Cambridge Molecular Diagnostics, Milton Road, Cambridge, UK.

Daniel Hayler (D)

Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.

Margarete A Fabre (MA)

Wellcome Sanger Institute, Hinxton, UK.
Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.
Department of Haematology, University of Cambridge, Cambridge, UK.

Krishnaa Mahbubani (K)

Department of Surgery, University of Cambridge, Cambridge, UK.
Cambridge Biorepository for Translational Medicine, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK.

Federico Abascal (F)

Wellcome Sanger Institute, Hinxton, UK.

Alex Cagan (A)

Wellcome Sanger Institute, Hinxton, UK.

George S Vassiliou (GS)

Wellcome Sanger Institute, Hinxton, UK.
Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.
Department of Haematology, University of Cambridge, Cambridge, UK.

Joanna Baxter (J)

Department of Haematology, University of Cambridge, Cambridge, UK.

Inigo Martincorena (I)

Wellcome Sanger Institute, Hinxton, UK.

Michael R Stratton (MR)

Wellcome Sanger Institute, Hinxton, UK.

David G Kent (DG)

York Biomedical Research Institute, Department of Biology, University of York, York, UK.

Krishna Chatterjee (K)

Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.

Kourosh Saeb Parsy (KS)

Department of Surgery, University of Cambridge, Cambridge, UK.
Cambridge Biorepository for Translational Medicine, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK.

Anthony R Green (AR)

Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.
Department of Haematology, University of Cambridge, Cambridge, UK.

Jyoti Nangalia (J)

Wellcome Sanger Institute, Hinxton, UK. jn5@sanger.ac.uk.
Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK. jn5@sanger.ac.uk.
Department of Haematology, University of Cambridge, Cambridge, UK. jn5@sanger.ac.uk.

Elisa Laurenti (E)

Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK. el422@cam.ac.uk.
Department of Haematology, University of Cambridge, Cambridge, UK. el422@cam.ac.uk.

Peter J Campbell (PJ)

Wellcome Sanger Institute, Hinxton, UK. pc8@sanger.ac.uk.
Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK. pc8@sanger.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH