Melatonin inhibits glycolysis in hepatocellular carcinoma cells by downregulating mitochondrial respiration and mTORC1 activity.
Journal
BMB reports
ISSN: 1976-670X
Titre abrégé: BMB Rep
Pays: Korea (South)
ID NLM: 101465334
Informations de publication
Date de publication:
Sep 2022
Sep 2022
Historique:
received:
09
12
2022
pubmed:
3
6
2022
medline:
30
9
2022
entrez:
2
6
2022
Statut:
ppublish
Résumé
Various mechanisms have been suggested to explain the chemopreventive and tumor-inhibitory effects of melatonin. Despite the growing evidence supporting melatonin-induced mitochondrial dysfunction, it remains largely unknown how this phenomenon modulates metabolic reprogramming in cancer cells. The aim of our study was to identify the mechanism underlying the anti-proliferative and apoptotic effects of melatonin, which is known to inhibit glycolysis. We analyzed the time-dependent effects of melatonin on mitochondrial respiration and glycolysis in liver cancer cells. The results showed that from a cell bioenergetic point of view, melatonin caused an acute reduction in mitochondrial respiration, however, increased reactive oxygen species production, thereby inhibiting mTORC1 activity from an early stage post-treatment without affecting glycolysis. Nevertheless, administration of melatonin for a longer time reduced expression of c-Myc protein, thereby suppressing glycolysis via downregulation of HK2 and LDHA. The data presented herein suggest that melatonin suppresses mitochondrial respiration and glycolysis simultaneously in HCC cells, leading to anti-cancer effects. Thus, melatonin can be used as an adjuvant agent for therapy of liver cancer. [BMB Reports 2022; 55(9): 459-464].
Substances chimiques
Reactive Oxygen Species
0
Mechanistic Target of Rapamycin Complex 1
EC 2.7.11.1
Melatonin
JL5DK93RCL
Types de publication
News
Langues
eng
Sous-ensembles de citation
IM
Pagination
459-464Références
J Pineal Res. 2010 Mar;48(2):178-84
pubmed: 20449875
Cell Metab. 2008 Jan;7(1):11-20
pubmed: 18177721
Lancet. 1978 Oct 14;2(8094):814-6
pubmed: 81365
Int J Mol Sci. 2017 Jul 26;18(8):
pubmed: 28933733
Curr Biol. 2014 Oct 6;24(19):2274-80
pubmed: 25220053
Arterioscler Thromb Vasc Biol. 2007 Apr;27(4):755-61
pubmed: 17272744
Redox Biol. 2013 Aug 26;1:427-32
pubmed: 24191236
FASEB J. 2010 Oct;24(10):3603-24
pubmed: 20534884
J Cancer. 2014 Oct 03;5(9):728-35
pubmed: 25368672
Exp Ther Med. 2020 Jun;19(6):3454-3460
pubmed: 32373191
Front Cell Dev Biol. 2018 Sep 25;6:122
pubmed: 30320109
Sci Rep. 2020 Apr 14;10(1):6352
pubmed: 32286500
Neural Regen Res. 2013 Jul 25;8(21):2003-14
pubmed: 25206509
Biochem Biophys Res Commun. 2011 Oct 14;414(1):5-8
pubmed: 21951851
Oxid Med Cell Longev. 2019 Feb 28;2019:7187128
pubmed: 30944696
Oncotarget. 2015 Jul 10;6(19):17081-96
pubmed: 26025920
J Pineal Res. 2009 May;46(4):415-21
pubmed: 19552765
Cancer Res. 2006 Oct 15;66(20):9789-93
pubmed: 17047036
Int J Mol Sci. 2013 May 28;14(6):11259-76
pubmed: 23759982
Cancer Cell Int. 2021 Mar 31;21(1):188
pubmed: 33789681
Curr Opin Cell Biol. 2017 Apr;45:72-82
pubmed: 28411448
Cancer Res. 2011 Apr 15;71(8):2815-20
pubmed: 21487041