MIMIR: Deep Regression for Automated Analysis of UK Biobank MRI Scans.

Adipose Tissue Convolutional Neural Network (CNN) MRI Metabolic Disorders Obesity Quantification Supervised Learning Volume Analysis Whole-Body Imaging

Journal

Radiology. Artificial intelligence
ISSN: 2638-6100
Titre abrégé: Radiol Artif Intell
Pays: United States
ID NLM: 101746556

Informations de publication

Date de publication:
May 2022
Historique:
received: 22 06 2021
revised: 25 02 2022
accepted: 23 03 2022
entrez: 2 6 2022
pubmed: 3 6 2022
medline: 3 6 2022
Statut: epublish

Résumé

UK Biobank (UKB) has recruited more than 500 000 volunteers from the United Kingdom, collecting health-related information on genetics, lifestyle, blood biochemistry, and more. Ongoing medical imaging of 100 000 participants with 70 000 follow-up sessions will yield up to 170 000 MRI scans, enabling image analysis of body composition, organs, and muscle. This study presents an experimental inference engine for automated analysis of UKB neck-to-knee body 1.5-T MRI scans. This retrospective cross-validation study includes data from 38 916 participants (52% female; mean age, 64 years) to capture baseline characteristics, such as age, height, weight, and sex, as well as measurements of body composition, organ volumes, and abstract properties, such as grip strength, pulse rate, and type 2 diabetes status. Prediction intervals for each end point were generated based on uncertainty quantification. On a subsequent release of UKB data, the proposed method predicted 12 body composition metrics with a 3% median error and yielded mostly well-calibrated individual prediction intervals. The processing of MRI scans from 1000 participants required 10 minutes. The underlying method used convolutional neural networks for image-based mean-variance regression on two-dimensional representations of the MRI data. An implementation was made publicly available for fast and fully automated estimation of 72 different measurements from future releases of UKB image data.

Identifiants

pubmed: 35652115
doi: 10.1148/ryai.210178
pmc: PMC9152682
doi:

Types de publication

Journal Article

Langues

eng

Pagination

e210178

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2022 by the Radiological Society of North America, Inc.

Déclaration de conflit d'intérêts

Disclosures of conflicts of interest: T.L. Grants from the Swedish Heart-Lung Foundation and the Swedish Research Council (2016-01040, 2019-04756, 2020-0500, 2021-70492). A.M.M. Salary from Uppsala University as Research Assistant during the completion of this work; funding from Uppsala University included computational material (computers, GPUs) and access to data used in the study. R.S. No relevant relationships. H.A. Swedish Research Council Swedish Lung-Heart Foundation payments to Uppsala University; stocks in Antaros Medical; one of four founders and an employee of Antaros Medical. J.K. Stock/stock options in Antaros Medical; co-founder, stockowner, and employee at Antaros Medical.

Références

Nat Commun. 2020 May 26;11(1):2624
pubmed: 32457287
J Chiropr Med. 2016 Jun;15(2):155-63
pubmed: 27330520
Sci Rep. 2020 Oct 20;10(1):17752
pubmed: 33082454
Sci Rep. 2020 Dec 1;10(1):20963
pubmed: 33262432
PLoS One. 2016 Sep 23;11(9):e0163332
pubmed: 27662190
Comput Med Imaging Graph. 2021 Oct;93:101994
pubmed: 34624770
PLoS One. 2017 Feb 27;12(2):e0172921
pubmed: 28241076
PLoS One. 2016 Sep 15;11(9):e0162388
pubmed: 27631769
Elife. 2021 Jun 15;10:
pubmed: 34128465
Nat Commun. 2019 Nov 27;10(1):5409
pubmed: 31776335
Invest Radiol. 2021 Jun 1;56(6):401-408
pubmed: 33930003
Obesity (Silver Spring). 2018 Nov;26(11):1785-1795
pubmed: 29785727

Auteurs

Taro Langner (T)

Departments of Surgical Sciences (T.L., A.M.M., R.S., H.A., J.K.) and Information Technology (R.S.), Uppsala University, Akademiska sjukhuset, ingång 78, 1tr, 751 85 Uppsala, Sweden; and Antaros Medical AB, Mölndal, Sweden (H.A., J.K.).

Andrés Martínez Mora (A)

Departments of Surgical Sciences (T.L., A.M.M., R.S., H.A., J.K.) and Information Technology (R.S.), Uppsala University, Akademiska sjukhuset, ingång 78, 1tr, 751 85 Uppsala, Sweden; and Antaros Medical AB, Mölndal, Sweden (H.A., J.K.).

Robin Strand (R)

Departments of Surgical Sciences (T.L., A.M.M., R.S., H.A., J.K.) and Information Technology (R.S.), Uppsala University, Akademiska sjukhuset, ingång 78, 1tr, 751 85 Uppsala, Sweden; and Antaros Medical AB, Mölndal, Sweden (H.A., J.K.).

Håkan Ahlström (H)

Departments of Surgical Sciences (T.L., A.M.M., R.S., H.A., J.K.) and Information Technology (R.S.), Uppsala University, Akademiska sjukhuset, ingång 78, 1tr, 751 85 Uppsala, Sweden; and Antaros Medical AB, Mölndal, Sweden (H.A., J.K.).

Joel Kullberg (J)

Departments of Surgical Sciences (T.L., A.M.M., R.S., H.A., J.K.) and Information Technology (R.S.), Uppsala University, Akademiska sjukhuset, ingång 78, 1tr, 751 85 Uppsala, Sweden; and Antaros Medical AB, Mölndal, Sweden (H.A., J.K.).

Classifications MeSH