Does machine-vision-assisted dynamic navigation improve the accuracy of digitally planned prosthetically guided immediate implant placement? A randomized controlled trial.

dental implants dynamic navigation free hand immediate implant placement machine vision randomized controlled clinical trial

Journal

Clinical oral implants research
ISSN: 1600-0501
Titre abrégé: Clin Oral Implants Res
Pays: Denmark
ID NLM: 9105713

Informations de publication

Date de publication:
Aug 2022
Historique:
revised: 19 05 2022
received: 15 04 2022
accepted: 29 05 2022
pubmed: 3 6 2022
medline: 10 8 2022
entrez: 2 6 2022
Statut: ppublish

Résumé

This randomized controlled clinical trial was designed to compare the accuracy of machine-vision (MV)-based dynamic navigation (DN)-assisted immediate implant placement with the conventional freehand technique. A total of 24 subjects requiring immediate implant placement in maxillary anterior teeth were randomly assigned to either the control (freehand by an experienced surgeon, n = 12) or the test group (MV-DN, n = 12). Implant platform, implant apex, angular, and depth deviations with respect to prosthetically guided digital planning and differences in implant insertion torque (ITV) and implant stability quotient (ISQ) were compared between the groups. MV-DN resulted in more accurate immediate implant position: significantly smaller global platform deviation (1.01 ± 0.41 mm vs. 1.51 ± 0.67 mm, p = .038), platform depth deviation (0.44 ± 0.46 mm vs. 0.95 ± 0.68 mm, p = .045), global apex deviation (0.88 ± 0.43 mm vs. 1.94 ± 0.86 mm, p = .001), and lateral apex deviation (0.68 ± 0.30 mm vs. 1.61 ± 0.88 mm, p = .004) were found in MV-DN compared to controls. No significant intergroup differences were observed for ITV and ISQ. MV-DN achieved more precise immediate implant position and comparable primary stability. Further trials are necessary to assess the benefits in terms of esthetics and tissue health/stability.

Identifiants

pubmed: 35652362
doi: 10.1111/clr.13961
doi:

Substances chimiques

Dental Implants 0

Types de publication

Journal Article Randomized Controlled Trial

Langues

eng

Pagination

804-815

Subventions

Organisme : Clinical Research Program of Ninth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine
ID : JYLJ201909
Organisme : Shanghai Clinical Research Center for Oral Diseases
ID : 19411950100
Organisme : Clinical Research Program of Ninth Peoples Hospital affiliated Shanghai Jiao Tong University School of Medicine
ID : JYLJ201909

Informations de copyright

© 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Références

Arisan, V., Karabuda, C. Z., Mumcu, E., & Özdemir, T. (2013). Implant positioning errors in freehand and computer-aided placement methods: A single-blind clinical comparative study. The International Journal of Oral & Maxillofacial Implants, 28(1), 190-204. https://doi.org/10.11607/jomi.2691
Aydemir, C. A., & Arısan, V. (2020). Accuracy of dental implant placement via dynamic navigation or the freehand method: A split-mouth randomized controlled clinical trial. Clinical Oral Implants Research, 31(3), 255-263. https://doi.org/10.1111/clr.13563
Blanco, J., Carral, C., Argibay, O., & Liñares, A. (2019). Implant placement in fresh extraction sockets. Periodontology 2000, 79(1), 151-167. https://doi.org/10.1111/prd.12253
Block, M., Emery, R., Lank, K., & Ryan, J. (2016). Implant placement accuracy using dynamic navigation. The International Journal of Oral & Maxillofacial Implants, 32(1), 92-99. https://doi.org/10.11607/jomi.5004
Brief, J., Edinger, D., Hassfeld, S., & Eggers, G. (2005). Accuracy of image-guided implantology. Clinical Oral Implants Research, 16(4), 495-501. https://doi.org/10.1111/j.1600-0501.2005.01133.x
Chen, Z., Li, J., Ceolin Meneghetti, P., Galli, M., Mendonça, G., & Wang, H. L. (2022). Does guided level (fully or partially) influence implant placement accuracy at post-extraction sockets and healed sites? An in vitro study. Clinical Oral Investigations. https://doi.org/10.1007/s00784-022-04512-y
Chen, Z., Li, J., Sinjab, K., Mendonca, G., Yu, H., & Wang, H. L. (2018). Accuracy of flapless immediate implant placement in anterior maxilla using computer-assisted versus freehand surgery: A cadaver study. Clinical Oral Implants Research, 29(12), 1186-1194. https://doi.org/10.1111/clr.13382
Chen, C. K., Yuh, D. Y., Huang, R. Y., Fu, E., Tsai, C. F., & Chiang, C. Y. (2018). Accuracy of implant placement with a navigation system, a laboratory guide, and freehand drilling. The International Journal of Oral & Maxillofacial Implants, 33(6), 1213-1218. https://doi.org/10.11607/jomi.6585
D'Haese, J., Ackhurst, J., Wismeijer, D., De Bruyn, H., & Tahmaseb, A. (2017). Current state of the art of computer-guided implant surgery. Periodontology 2000, 73(1), 121-133. https://doi.org/10.1111/prd.12175
Feine, J., Abou-Ayash, S., al Mardini, M., de Santana, R. B., Bjelke-Holtermann, T., Bornstein, M. M., Braegger, U., Cao, O., Cordaro, L., Eycken, D., Fillion, M., Gebran, G., Huynh-Ba, G., Joda, T., Levine, R., Mattheos, N., Oates, T. W., Abd-Ul-Salam, H., Santosa, R., … Zubiria, J. P. V. (2018). Group 3 ITI consensus report: Patient-reported outcome measures associated with implant dentistry. Clinical Oral Implants Research, 29(Suppl 16), 270-275. https://doi.org/10.1111/clr.13299
Flügge, T., Ludwig, U., Winter, G., Amrein, P., Kernen, F., & Nelson, K. (2020). Fully guided implant surgery using magnetic resonance imaging - an in vitro study on accuracy in human mandibles. Clinical Oral Implants Research, 31(8), 737-746. https://doi.org/10.1111/clr.13622
Golob Deeb, J., Bencharit, S., Carrico, C. K., Lukic, M., Hawkins, D., Rener-Sitar, K., & Deeb, G. R. (2019). Exploring training dental implant placement using computer-guided implant navigation system for predoctoral students: A pilot study. European Journal of Dental Education: official journal of the Association for Dental Education in Europe, 23(4), 415-423. https://doi.org/10.1111/eje.12447
Guo, N., Zhao, Q., Fan, H., Yu, H., Cui, X., Lv, M., & Li, T. (2021). Binocular stereo vision calibration based on accurate ellipse detection algorithm of direct calculation and grating conversion check. Optik, 242, 166269. https://doi.org/10.1016/j.ijleo.2021.166269
Hilgenfeld, T., Juerchott, A., Deisenhofer, U. K., Weber, D., Rues, S., Rammelsberg, P., Heiland, S., Bendszus, M., & Schwindling, F. S. (2019). In vivo accuracy of tooth surface reconstruction based on CBCT and dental MRI-A clinical pilot study. Clinical Oral Implants Research, 30(9), 920-927. https://doi.org/10.1111/clr.13498
Joda, T., Derksen, W., Wittneben, J. G., & Kuehl, S. (2018). Static computer-aided implant surgery (s-CAIS) analysing patient-reported outcome measures (PROMs), economics and surgical complications: A systematic review. Clinical Oral Implants Research, 29(Suppl 16), 359-373. https://doi.org/10.1111/clr.13136
Jorba-Garcia, A., Figueiredo, R., Gonzalez-Barnadas, A., Camps-Font, O., & Valmaseda-Castellon, E. (2019). Accuracy and the role of experience in dynamic computer guided dental implant surgery: An in-vitro study. Medicina Oral Patologia Oral Y Cirugia Bucal, 24(1), E76-E83. https://doi.org/10.4317/medoral.22785
Kaewsiri, D., Panmekiate, S., Subbalekha, K., Mattheos, N., & Pimkhaokham, A. (2019). The accuracy of static vs. dynamic computer-assisted implant surgery in single tooth space: A randomized controlled trial. Clinical Oral Implants Research, 30(6), 505-514. https://doi.org/10.1111/clr.13435
Kalfas, I. H. (2021). Machine vision navigation in spine surgery. Front Surg, 8, 640554. https://doi.org/10.3389/fsurg.2021.640554
Kan, J. Y. K., Rungcharassaeng, K., Deflorian, M., Weinstein, T., Wang, H.-L., & Testori, T. (2018). Immediate implant placement and provisionalization of maxillary anterior single implants. Periodontology 2000, 77(1), 197-212. https://doi.org/10.1111/prd.12212
Kuo, P. J., Lin, C. Y., Hung, T. F., Chiu, H. C., & Kuo, H. Y. (2022). A novel application of dynamic guided navigation system in immediate implant placement. Journal of Dental Sciences, 17(1), 354-360. https://doi.org/10.1016/j.jds.2021.09.030
Pozzi, A., Arcuri, L., Carosi, P., Nardi, A., & Kan, J. (2021). Clinical and radiological outcomes of novel digital workflow and dynamic navigation for single-implant immediate loading in aesthetic zone: 1-year prospective case series. Clinical Oral Implants Research, 32(12), 1397-1410. https://doi.org/10.1111/clr.13839
Ramezanzade, S., Keyhan, S. O., Tuminelli, F. J., Fallahi, H. R., Yousefi, P., & Lopez-Lopez, J. (2021). Dynamic-assisted navigational system in zygomatic implant surgery: A qualitative and quantitative systematic review of current clinical and cadaver studies. Journal of Oral and Maxillofacial Surgery, 79(4), 799-812. https://doi.org/10.1016/j.joms.2020.10.009
Shi, J. Y., Wang, R., Zhuang, L. F., Gu, Y. X., Qiao, S. C., & Lai, H. C. (2015). Esthetic outcome of single implant crowns following type 1 and type 3 implant placement: A systematic review. Clinical Oral Implants Research, 26(7), 768-774. https://doi.org/10.1111/clr.12334
Siqueira, R., Chen, Z., Galli, M., Saleh, I., Wang, H. L., & Chan, H. L. (2020). Does a fully digital workflow improve the accuracy of computer-assisted implant surgery in partially edentulous patients? A systematic review of clinical trials. Clinical Implant Dentistry and Related Research, 22(6), 660-671. https://doi.org/10.1111/cid.12937
Stefanelli, L. V., Mandelaris, G. A., Franchina, A., Pranno, N., Pagliarulo, M., Cera, F., Maltese, F., Angelis, F., & Carlo, S. D. (2020). Accuracy of dynamic navigation system workflow for implant supported full arch prosthesis. A Case Series. International Journal of Environmental Research and Public Health, 17(14), 5038. https://doi.org/10.3390/ijerph17145038
Tahmaseb, A., Wismeijer, D., Coucke, W., & Derksen, W. (2014). Computer technology applications in surgical implant dentistry: A systematic review. The International Journal of Oral & Maxillofacial Implants, 29(Suppl), 25-42. https://doi.org/10.11607/jomi.2014suppl.g1.2
Tao, B., Shen, Y., Sun, Y., Huang, W., Wang, F., & Wu, Y. (2020). Comparative accuracy of cone-beam CT and conventional multislice computed tomography for real-time navigation in zygomatic implant surgery. Clinical Implant Dentistry and Related Research, 22(6), 747-755. https://doi.org/10.1111/cid.12958
Thompson, P. D., Colebatch, J. G., Brown, P., Rothwell, J. C., Day, B. L., Obeso, J. A., & Marsden, C. D. (1992). Voluntary stimulus-sensitive jerks and jumps mimicking myoclonus or pathological startle syndromes. Movement Disorders, 7(3), 257-262. https://doi.org/10.1002/mds.870070312
Wei, S. M., Shi, J. Y., Qiao, S. C., Zhang, X., Lai, H. C., & Zhang, X. M. (2022). Accuracy and primary stability of tapered or straight implants placed into fresh extraction socket using dynamic navigation: A randomized controlled clinical trial. Clinical Oral Investigations, 26(3), 2733-2741. https://doi.org/10.1007/s00784-021-04247-2
Wei, S. M., Zhu, Y., Wei, J. X., Zhang, C. N., Shi, J. Y., & Lai, H. C. (2021). Accuracy of dynamic navigation in implant surgery: A systematic review and meta-analysis. Clinical Oral Implants Research, 32(4), 383-393. https://doi.org/10.1111/clr.13719
Wismeijer, D., Joda, T., Flügge, T., Fokas, G., Tahmaseb, A., Bechelli, D., Bohner, L., Bornstein, M., Burgoyne, A., Caram, S., Carmichael, R., Chen, C. Y., Coucke, W., Derksen, W., Donos, N., el Kholy, K., Evans, C., Fehmer, V., Fickl, S., … Wu, V. (2018). Group 5 ITI consensus report: Digital technologies. Clinical Oral Implants Research, 29(Suppl 16), 436-442. https://doi.org/10.1111/clr.13309
Wu, D., Zhou, L., Yang, J., Zhang, B., Lin, Y., Chen, J., Huang, W., & Chen, Y. (2020). Accuracy of dynamic navigation compared to static surgical guide for dental implant placement. International Journal of Implant Dentistry, 6(1), 78. https://doi.org/10.1186/s40729-020-00272-0

Auteurs

Shi-Min Wei (SM)

Shanghai PerioImplant Innovation Center and Department of Oral and Maxillo-Facial Implantology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.

Yuan Li (Y)

Shanghai PerioImplant Innovation Center and Department of Oral and Maxillo-Facial Implantology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.

Ke Deng (K)

Shanghai PerioImplant Innovation Center and Department of Oral and Maxillo-Facial Implantology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.

Hong-Chang Lai (HC)

Shanghai PerioImplant Innovation Center and Department of Oral and Maxillo-Facial Implantology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.

Maurizio S Tonetti (MS)

Shanghai PerioImplant Innovation Center and Department of Oral and Maxillo-Facial Implantology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
European Research Group on Periodontology, Genova, Italy.

Jun-Yu Shi (JY)

Shanghai PerioImplant Innovation Center and Department of Oral and Maxillo-Facial Implantology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH