Filtration extraction method using a microfluidic channel for measuring environmental DNA.
eDNA
extraction
filtering
microfluidic
Journal
Molecular ecology resources
ISSN: 1755-0998
Titre abrégé: Mol Ecol Resour
Pays: England
ID NLM: 101465604
Informations de publication
Date de publication:
Oct 2022
Oct 2022
Historique:
revised:
09
05
2022
received:
18
11
2021
accepted:
26
05
2022
pubmed:
3
6
2022
medline:
8
9
2022
entrez:
2
6
2022
Statut:
ppublish
Résumé
The environmental DNA (eDNA) method, which is widely applied in biomonitoring, is limited to laboratory analysis and processing. In this study, we developed a filtration/extraction component using a microfluidic channel, the Biryu-Chip (BC), and a filtration/extraction method, the BC method, to minimize the volume of the sample necessary for DNA extraction and subsequent PCR amplification. We tested the performance of the BC method and compared it with that of the Sterivex filtration/extraction method using aquarium and river water samples. We observed that using the BC method, the same concentration of extracted DNA was obtained with 1/20-1/40 of the filtration volume of the Sterivex method, suggesting that the BC method can be widely used for eDNA measurement. In addition, we performed on-site measurements of eDNA within 30 min using a mobile PCR device, demonstrating that filtration and extraction can be performed easily and quickly using the BC method. The PCR results obtained using the BC method were similar to those obtained using the Sterivex method. The BC method requires fewer steps; therefore, the risk of DNA contamination can be reduced. When combined with mobile PCR, the BC method can be applied to easily detect eDNA within 30 min from the collection of water sample, even on-site.
Identifiants
pubmed: 35652737
doi: 10.1111/1755-0998.13657
doi:
Substances chimiques
DNA, Environmental
0
Water
059QF0KO0R
DNA
9007-49-2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2651-2661Subventions
Organisme : Environment Research and Technology Development Fund
ID : JPMEERF20204004
Informations de copyright
© 2022 John Wiley & Sons Ltd.
Références
Buxton, A. S., Groombridge, J. J., & Griffiths, R. A. (2018). Seasonal variation in environmental DNA detection in sediment and water samples. PLoS One, 13(1), e0191737.
Coster, S. S., Dillon, M. N., Moore, W., & Merovich, G. T., Jr. (2021). The update and optimization of an eDNA assay to detect the invasive rusty crayfish (Faxonius rusticus). PLoS One, 16(10), e0259084. https://doi.org/10.1371/journal.pone.0259084
Díaz, C., Wege, F. F., Tang, C. Q., Crampton-Platt, A., Rüdel, H., Eilebrecht, E., & Koschorreck, J. (2020). Aquatic suspended particulate matter as source of eDNA for fish metabarcoding. Scientific Reports, 10(1), 14352. https://doi.org/10.1038/s41598-020-71238-w
Doi, H., Akamatsu, Y., Watanabe, Y., Goto, M., Inui, R., Katano, I., Nagano, M., Takahara, T., & Minamoto, T. (2017). Water sampling for environmental DNA surveys by using an unmanned aerial vehicle. Limnology and Oceanography: Methods, 15(11), 939-944.
Doi, H., Inui, R., Akamatsu, Y., Kanno, K., Yamanaka, H., Takahara, T., & Minamoto, T. (2017). Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshwater Biology, 62(1), 30-39. https://doi.org/10.1111/fwb.12846
Doi, H., Katano, I., Sakata, Y., Souma, R., Kosuge, T., Nagano, M., Ikeda, K., Yano, K., & Tojo, K. (2017). Detection of an endangered aquatic heteropteran using environmental DNA in a wetland ecosystem. Royal Society Open Science, 4(7), 170568. https://doi.org/10.1098/rsos.170568
Doi, H., Watanabe, T., Nishizawa, N., Saito, T., Nagata, H., Kameda, Y., Makin, N., Ikeda, K., & Fukuzawa, T. (2021). On-site environmental DNA detection of species using ultrarapid mobile PCR. Molecular Ecology Resources, 21(7), 2364-2368. https://doi.org/10.1111/1755-0998.13448
Eichmiller, J. J., Bajer, P. G., & Sorensen, P. W. (2014). The relationship between the distribution of common carp and their environmental DNA in a small lake. PLoS One, 9(11), e112611.
Eichmiller, J. J., Miller, L. M., & Sorensen, P. W. (2016). Optimizing techniques to capture and extract environmental DNA for detection and quantification of fish. Molecular Ecology Resources, 16(1), 56-68. https://doi.org/10.1111/1755-0998.12421
Ficetola, G. F., Miaud, C., Pompanon, F., & Taberlet, P. (2008). Species detection using environmental DNA from water samples. Biology Letters, 4(4), 423-425.
Fornillos, R. J. C., Sato, M. O., Tabios, I. K. B., Sato, M., Leonardo, L. R., Chigusa, Y., Minamoto, T., Kikuchi, M., Legaspi, E. R., & Fontanilla, I. K. C. (2019). Detection of Schistosoma japonicum and Oncomelania hupensis quadrasi environmental DNA and its potential utility to Schistosomiasis japonica surveillance in The Philippines. PLoS One, 14(11), e0224617. https://doi.org/10.1371/journal.pone.0224617
Hinlo, R., Gleeson, D., Lintermans, M., & Furlan, E. (2017). Methods to maximise recovery of environmental DNA from water samples. PLoS One, 12(6), e0179251. https://doi.org/10.1371/journal.pone.0179251
Hunter, M. E., Ferrante, J. A., Meigs-Friend, G., & Ulmer, A. (2019). Improving eDNA yield and inhibitor reduction through increased water volumes and multi-filter isolation techniques. Scientific Reports, 9(1), 1-9.
Katano, I., Harada, K., Doi, H., Souma, R., & Minamoto, T. (2017). Environmental DNA method for estimating salamander distribution in headwater streams, and a comparison of water sampling methods. PLoS One, 12(5), e0176541. https://doi.org/10.1371/journal.pone.0176541
Mauvisseau, Q., Burian, A., Gibson, C., Brys, R., Ramsey, A., & Sweet, M. (2019). Influence of accuracy, repeatability and detection probability in the reliability of species-specific eDNA based approaches. Scientific Reports, 9, 580.
Minamoto, T., Miya, M., Sado, T., Seino, S., Doi, H., & Kondoh, M. (2021). An illustrated manual for environmental DNA research: Water sampling guidelines and experimental protocols. Environmental DNA, 3(1), 8-13. https://doi.org/10.1002/edn3.121
Miya, M., Minamoto, T., Yamanaka, H., Oka, S. I., Sato, K., Yamamoto, S., Sado, T., & Doi, H. (2016). Use of a filter cartridge for filtration of water samples and extraction of environmental DNA. Journal of Visualized Experiments: JoVE, 117(117), e54741. https://doi.org/10.3791/54741
Nguyen, P. L., Sudheesh, P. S., Thomas, A. C., Sinnesael, M., Haman, K., & Cain, K. D. (2018). Rapid detection and monitoring of Flavobacterium psychrophilum in water by using a handheld, field-portable quantitative PCR system. Journal of Aquatic Animal Health, 30(4), 302-311. https://doi.org/10.1002/aah.10046
Preece, E. P., Bryan, M., Mapes, S. M., Wademan, C., & Dorazio, R. (2021). Monitoring for freshwater mussel presence in rivers using environmental DNA. Environmental DNA, 3(3), 591-604.
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.r-project.org/
Sakata, M. K., Yamamoto, S., Gotoh, R. O., Miya, M., Yamanaka, H., & Minamoto, T. (2020). Sedimentary eDNA provides different information on timescale and fish species composition compared with aqueous eDNA. Environmental DNA, 2(4), 505-518. https://doi.org/10.1002/edn3.75
Sassoubre, L. M., Yamahara, K. M., Gardner, L. D., Block, B. A., & Boehm, A. B. (2016). Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish. Environmental Science and Technology, 50(19), 10456-10464. https://doi.org/10.1021/acs.est.6b03114
Sato, H., Sogo, Y., Doi, H., & Yamanaka, H. (2017). Usefulness and limitations of sample pooling for environmental DNA metabarcoding of freshwater fish communities. Scientific Reports, 7(1), 1-12.
Suter, L., Polanowski, A. M., Clarke, L. J., Kitchener, J. A., & Deagle, B. E. (2021). Capturing open ocean biodiversity: comparing environmental DNA metabarcoding to the continuous plankton recorder. Molecular Ecology, 30(13), 3140-3157.
Takahara, T., Minamoto, T., Yamanaka, H., Doi, H., & Kawabata, Z. (2012). Estimation of fish biomass using environmental DNA. PLoS One, 7(4), e35868. https://doi.org/10.1371/journal.pone.0035868
Thomas, A. C., Howard, J., Nguyen, P. L., Seimon, T. A., & Goldberg, C. S. (2018). eDNA Sampler: A fully integrated environmental DNA sampling system. Methods in Ecology and Evolution, 9(6), 1379-1385. https://doi.org/10.1111/2041-210X.12994
Thomas, A. C., Tank, S., Nguyen, P. L., Ponce, J., Sinnesael, M., & Goldberg, C. S. (2020). A system for rapid eDNA detection of aquatic invasive species. Environmental DNA, 2(3), 261-270. https://doi.org/10.1002/edn3.25
Tsuji, S., Takahara, T., Doi, H., Shibata, N., & Yamanaka, H. (2019). The detection of aquatic macroorganisms using environmental DNA analysis-A review of methods for collection, extraction, and detection. Environmental DNA, 1(2), 99-108. https://doi.org/10.1002/edn3.21
Uchii, K., Doi, H., Okahashi, T., Katano, I., Yamanaka, H., Sakata, M. K., & Minamoto, T. (2019). Comparison of inhibition resistance among PCR reagents for detection and quantification of environmental DNA. Environmental DNA, 1(4), 359-367. https://doi.org/10.1002/edn3.37
Wang, S., Yan, Z., Hänfling, B., Zheng, X., Wang, P., Fan, J., & Li, J. (2021). Methodology of fish eDNA and its applications in ecology and environment. Science of the Total Environment, 755, 142622.
Wilcox, T. M., Carim, K. J., McKelvey, K. S., Young, M. K., & Schwartz, M. K. (2015). The dual challenges of generality and specificity when developing environmental DNA markers for species and subspecies of Oncorhynchus. PLoS One, 10(11), e0142008. https://doi.org/10.1371/journal.pone.0142008