Electrocatalytic Hydrogen Evolution Using A Molecular Antimony Complex under Aqueous Conditions: An Experimental and Computational Study on Main-Group Element Catalysis.

antimony electrochemistry heterogenized catalyst hydrogen evolution reaction main-group element

Journal

Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783

Informations de publication

Date de publication:
16 Sep 2022
Historique:
received: 28 04 2022
pubmed: 3 6 2022
medline: 3 6 2022
entrez: 2 6 2022
Statut: ppublish

Résumé

Electrocatalytic hydrogen gas production is considered a potential pathway towards carbon-neutral energy sources. However, the development of this technology is hindered by the lack of efficient, cost-effective, and environmentally benign catalysts. In this study, a main-group-element-based electrocatalyst, SbSalen, is reported to catalyze the hydrogen evolution reaction (HER) in an aqueous medium. The heterogenized molecular system achieved a Faradaic efficiency of 100 % at -1.4 V vs. NHE with a maximum current density of -30.7 mA/cm

Identifiants

pubmed: 35652804
doi: 10.1002/chem.202201323
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202201323

Subventions

Organisme : National Science Foundation
ID : CHE-2041436
Organisme : National Science Foundation
ID : CHE-1726092
Organisme : University of Tennessee, Knoxville
ID : Infrastructure for Scientific Applications and Advanced Computing (ISAAC)

Informations de copyright

© 2022 Wiley-VCH GmbH.

Références

J. Zhu, L. Hu, P. Zhao, L. Y. S. Lee, K. Y. Wong, Chem. Rev. 2020, 120, 851-918.
L. Schlapbach, A. Züttel, Nature 2001, 414, 353-358.
REN21, Renewables 2020 Global Status Report, 2020.
R. Garcia-Garcia, G. Ortega-Zarzosa, M. E. Rincón, G. Orozco, Electrocatalysis 2014, 6, 263-273.
 
N. Cheng, S. Stambula, D. Wang, M. N. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T. K. Sham, L. M. Liu, G. A. Botton, X. Sun, Nat. Commun. 2016, 7, 13638-13647;
J. Greeley, T. F. Jaramillo, J. Bonde, I. B. Chorkendorff, J. K. Norskov, Nat. Mater. 2006, 5, 909-913.
X. Zou, Y. Zhang, Chem. Soc. Rev. 2015, 44, 5148-5180.
M. Li, Q. Ma, W. Zi, X. Liu, X. Zhu, S. F. Liu, Science 2015, 1, 1-7.
 
K. Jiang, B. Liu, M. Luo, S. Ning, M. Peng, Y. Zhao, Y. R. Lu, T. S. Chan, F. M. F. de Groot, Y. Tan, Nat. Commun. 2019, 10, 1743-1752;
S. Štrbac, M. Smiljanić, T. Wakelin, J. Potočnik, Z. Rakočević, Electrochim. Acta 2019, 306, 18-27.
 
H. Kotani, R. Hanazaki, K. Ohkubo, Y. Yamada, S. Fukuzumi, Chemistry 2011, 17, 2777-2785;
J. Kim, H. Kim, W. J. Lee, B. Ruqia, H. Baik, H. S. Oh, S. M. Paek, H. K. Lim, C. H. Choi, S. I. Choi, J. Am. Chem. Soc. 2019, 141, 18256-18263.
J. Xu, R. Li, R. Zeng, X. Yan, Q. Zhao, J. Ba, W. Luo, D. Meng, ACS Appl. Mater. Interfaces 2020, 12, 38106-38112.
G.-G. Luo, H.-L. Zhang, Y.-W. Tao, Q.-Y. Wu, D. Tian, Q. Zhang, Inorg. Chem. Front. 2019, 6, 343-354.
M. L. Helm, M. P. Stewart, R. M. Bullock, M. R. DuBois, D. L. DuBois, Science 2011, 333, 863-866.
 
J. Jiang, K. L. Materna, S. Hedstrom, K. R. Yang, R. H. Crabtree, V. S. Batista, G. W. Brudvig, Angew. Chem. Int. Ed. 2017, 56, 9111-9115;
Angew. Chem. 2017, 129, 9239-9243;
Y. Wu, N. Rodriguez-López, D. Villagrán, Chem. Sci. 2018, 9, 4689-4695;
D. J. Graham, D. G. Nocera, Organometallics 2014, 33, 4994-5001;
H. Lei, H. Fang, Y. Han, W. Lai, X. Fu, R. Cao, ACS Catal. 2015, 5, 5145-5153;
N. Rodríguez-López, Y. Wu, Y. Ge, D. Villagrán, J. Phys. Chem. C 2020, 124, 10265-10271;
I. Bhugun, D. Lexa, J. M. Savéant, J. Am. Chem. Soc. 1996, 118, 3982-3983;
Y. Liu, Y. Han, Z. Zhang, W. Zhang, W. Lai, Y. Wang, R. Cao, Chem. Sci. 2019, 10, 2613-2622.
S. Aroua, T. K. Todorova, V. Mougel, P. Hommes, H.-U. Reissig, M. Fontecave, ChemCatChem 2017, 9, 2099-2105.
S. C. Marinescu, J. R. Winkler, H. B. Gray, Proc. Natl. Acad. Sci. USA 2012, 109, 15127-15131.
W.-C. Xiao, Y.-W. Tao, G.-G. Luo, Int. J. Hydrogen Energy 2020, 45, 8177-8185.
 
R. Jain, A. A. Mamun, R. M. Buchanan, P. M. Kozlowski, C. A. Grapperhaus, Inorg. Chem. 2018, 57, 13486-13493;
C. A. Calvary, O. Hietsoi, D. T. Hofsommer, H. C. Brun, A. M. Costello, M. S. Mashuta, J. M. Spurgeon, R. M. Buchanan, C. A. Grapperhaus, Eur. J. Inorg. Chem. 2020, 2021, 267-275;
A. Z. Haddad, B. D. Garabato, P. M. Kozlowski, R. M. Buchanan, C. A. Grapperhaus, J. Am. Chem. Soc. 2016, 138, 7844-7847.
C.-B. Li, P. Gong, Y. Yang, H.-Y. Wang, Catal. Lett. 2018, 148, 3158-3164.
B. C. Patra, S. Khilari, R. N. Manna, S. Mondal, D. Pradhan, A. Pradhan, A. Bhaumik, ACS Catal. 2017, 7, 6120-6127.
 
Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S. Z. Qiao, Nat. Commun. 2014, 5, 3783-3891;
N. Wang, H. Lei, Z. Zhang, J. Li, W. Zhang, R. Cao, Chem. Sci. 2019, 10, 2308-2314;
E. J. Thompson, L. A. Berben, Angew. Chem. Int. Ed. 2015, 54, 11642-11646;
Angew. Chem. 2015, 127, 11808-11812.
 
T. Shiragami, J. Matsumoto, H. Inoue, M. Yasuda, J. Photochem. Photobiol. C 2005, 6, 227-248;
M. Ertl, E. Woss, G. Knor, Photochem. Photobiol. Sci. 2015, 14, 1826-1830;
H. Zhou, M. Feng, K. Song, B. Liao, Y. Wang, R. Liu, X. Gong, D. Zhang, L. Cao, S. Chen, Nanoscale 2019, 11, 22871-22879.
 
Y. Li, J. Chen, J. Huang, Y. Hou, L. Lei, W. Lin, Y. Lian, X. Zhonghua, H. H. Yang, Z. Wen, Chem. Commun. 2019, 55, 10884-10887;
A. Maiti, S. K. Srivastava, ACS Appl. Mater. Interfaces 2020, 12, 7057-7070;
C. Gibaja, M. Assebban, I. Torres, M. Fickert, R. Sanchis-Gual, I. Brotons, W. S. Paz, J. J. Palacios, E. G. Michel, G. Abellán, F. Zamora, J. Mater. Chem. A 2019, 7, 22475-22486;
R. Gusmão, Z. Sofer, J. Luxa, M. Pumera, ACS Sustainable Chem. Eng. 2019, 7, 15790-15798.
 
X. Wang, I. Thiel, A. Fedorov, C. Coperet, V. Mougel, M. Fontecave, Chem. Sci. 2017, 8, 8204-8213;
S. I. Johnson, J. D. Blakemore, B. S. Brunschwig, N. S. Lewis, H. B. Gray, W. A. Goddard, P. Persson, Phys. Chem. Chem. Phys. 2021, 23, 9921-9929.
L. Severy, J. Szczerbinski, M. Taskin, I. Tuncay, F. Brandalise Nunes, C. Cignarella, G. Tocci, O. Blacque, J. Osterwalder, R. Zenobi, M. Iannuzzi, S. D. Tilley, Nat. Chem. 2021, 13, 523-529.
 
G. Zhao, K. Rui, S. X. Dou, W. Sun, Adv. Funct. Mater. 2018, 28, 1803291;
A. Kumar, S. S, P. Varshney, A. Paul, S. Jeyaraman, Dalton Trans. 2019, 48, 11345-11351;
S. Sinha, A. Sonea, W. Shen, S. S. Hanson, J. J. Warren, Inorg. Chem. 2019, 58, 10454-10461;
D. Lionetti, V. W. Day, J. D. Blakemore, Dalton Trans. 2017, 46, 11779-11789.
 
N. Kaeffer, A. Morozan, J. Fize, E. Martinez, L. Guetaz, V. Artero, ACS Catal. 2016, 6, 3727-3737;
E. S. Andreiadis, P. A. Jacques, P. D. Tran, A. Leyris, M. Chavarot-Kerlidou, B. Jousselme, M. Matheron, J. Pecaut, S. Palacin, M. Fontecave, V. Artero, Nat. Chem. 2013, 5, 48-53.
A. Le Goff, V. Artero, B. Jousselme, P. D. Tran, N. Guillet, R. Métayé, A. Fihri, S. Palacin, M. Fontecave, Science 2009, 326, 1384-1387.
N. Kornienko, J. Resasco, N. Becknell, C. M. Jiang, Y. S. Liu, K. Nie, X. Sun, J. Guo, S. R. Leone, P. Yang, J. Am. Chem. Soc. 2015, 137, 7448-7455.
A. Lasia, Int. J. Hydrogen Energy 2019, 44, 19484-19518.
B. E. Conway, B. V. Tilak, Electrochim. Acta 2002, 47, 3571-3594.
J. O. M. Bockris, E. C. Potter, J. Electrochem. Soc. 1952, 99, 169-186.
J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 2005, 152, J23-J26.
Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44, 2060-2086.
L. A. Kibler, ChemPhysChem 2006, 7, 985-991.
J. D. Collett, J. A. Krause, H. Guan, J. Chem. Educ. 2020, 98, 592-599.
P. P. Rade, B. Garnaik, Int. J. Polym. Anal. Charact. 2020, 25, 283-299.
S. Anantharaj, P. E. Karthik, S. Noda, Angew. Chem. Int. Ed. 2021, 60, 23051-23067;
Angew. Chem. 2021, 133, 23235-23251.
V. M. Gowri, A. Ajith, S. A. John, Langmuir 2021, 37, 10538-10546.
C. J. Powell, Appl. Surf. Sci. 1995, 89, 141-149.
 
A. G. Maher, G. Passard, D. K. Dogutan, R. L. Halbach, B. L. Anderson, C. J. Gagliardi, M. Taniguchi, J. S. Lindsey, D. G. Nocera, ACS Catal. 2017, 7, 3597-3606;
B. H. Solis, A. G. Maher, D. K. Dogutan, D. G. Nocera, S. Hammes-Schiffer, Proc. Natl. Acad. Sci. USA 2016, 113, 485-492.
A. Barrozo, M. Orio, ChemSusChem 2019, 12, 4905-4915.
A. Z. Haddad, S. P. Cronin, M. S. Mashuta, R. M. Buchanan, C. A. Grapperhaus, Inorg. Chem. 2017, 56, 11254-11265.
C. K. Williams, G. A. McCarver, A. Lashgari, K. D. Vogiatzis, J. Jiang, Inorg. Chem. 2021, 60, 4915-4923.
A. P. Murthy, J. Theerthagiri, J. Madhavan, J. Phys. Chem. C 2018, 122, 23943-23949.
X. Tian, P. Zhao, W. Sheng, Adv. Mater. 2019, 31, 1808066.
D. Meng, J. Bi, Y. Dong, B. Hao, K. Qin, T. Li, D. Zhu, Chem. Commun. 2020, 56, 2889-2892.
F. Neese, F. Wennmohs, U. Becker, C. Riplinger, J. Chem. Phys. 2020, 152, 224108.
 
C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789;
A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
J. Kalinowski, F. Wennmohs, F. Neese, J. Chem. Theory Comput. 2017, 13, 3160-3170.
F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057-1065.
V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995-2001.
R. G. Bates, J. B. Macaskill, Pure Appl. Chem. 1978, 50, 1701-1706.

Auteurs

Caroline K Williams (CK)

Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221, USA.

Gavin A McCarver (GA)

Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996-1600, USA.

Ashwin Chaturvedi (A)

Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221, USA.

Soumalya Sinha (S)

Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221, USA.

Marcus Ang (M)

Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221, USA.

Konstantinos D Vogiatzis (KD)

Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996-1600, USA.

Jianbing Jimmy Jiang (JJ)

Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221, USA.

Classifications MeSH