Electrocatalytic Hydrogen Evolution Using A Molecular Antimony Complex under Aqueous Conditions: An Experimental and Computational Study on Main-Group Element Catalysis.
antimony
electrochemistry
heterogenized catalyst
hydrogen evolution reaction
main-group element
Journal
Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783
Informations de publication
Date de publication:
16 Sep 2022
16 Sep 2022
Historique:
received:
28
04
2022
pubmed:
3
6
2022
medline:
3
6
2022
entrez:
2
6
2022
Statut:
ppublish
Résumé
Electrocatalytic hydrogen gas production is considered a potential pathway towards carbon-neutral energy sources. However, the development of this technology is hindered by the lack of efficient, cost-effective, and environmentally benign catalysts. In this study, a main-group-element-based electrocatalyst, SbSalen, is reported to catalyze the hydrogen evolution reaction (HER) in an aqueous medium. The heterogenized molecular system achieved a Faradaic efficiency of 100 % at -1.4 V vs. NHE with a maximum current density of -30.7 mA/cm
Identifiants
pubmed: 35652804
doi: 10.1002/chem.202201323
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202201323Subventions
Organisme : National Science Foundation
ID : CHE-2041436
Organisme : National Science Foundation
ID : CHE-1726092
Organisme : University of Tennessee, Knoxville
ID : Infrastructure for Scientific Applications and Advanced Computing (ISAAC)
Informations de copyright
© 2022 Wiley-VCH GmbH.
Références
J. Zhu, L. Hu, P. Zhao, L. Y. S. Lee, K. Y. Wong, Chem. Rev. 2020, 120, 851-918.
L. Schlapbach, A. Züttel, Nature 2001, 414, 353-358.
REN21, Renewables 2020 Global Status Report, 2020.
R. Garcia-Garcia, G. Ortega-Zarzosa, M. E. Rincón, G. Orozco, Electrocatalysis 2014, 6, 263-273.
N. Cheng, S. Stambula, D. Wang, M. N. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T. K. Sham, L. M. Liu, G. A. Botton, X. Sun, Nat. Commun. 2016, 7, 13638-13647;
J. Greeley, T. F. Jaramillo, J. Bonde, I. B. Chorkendorff, J. K. Norskov, Nat. Mater. 2006, 5, 909-913.
X. Zou, Y. Zhang, Chem. Soc. Rev. 2015, 44, 5148-5180.
M. Li, Q. Ma, W. Zi, X. Liu, X. Zhu, S. F. Liu, Science 2015, 1, 1-7.
K. Jiang, B. Liu, M. Luo, S. Ning, M. Peng, Y. Zhao, Y. R. Lu, T. S. Chan, F. M. F. de Groot, Y. Tan, Nat. Commun. 2019, 10, 1743-1752;
S. Štrbac, M. Smiljanić, T. Wakelin, J. Potočnik, Z. Rakočević, Electrochim. Acta 2019, 306, 18-27.
H. Kotani, R. Hanazaki, K. Ohkubo, Y. Yamada, S. Fukuzumi, Chemistry 2011, 17, 2777-2785;
J. Kim, H. Kim, W. J. Lee, B. Ruqia, H. Baik, H. S. Oh, S. M. Paek, H. K. Lim, C. H. Choi, S. I. Choi, J. Am. Chem. Soc. 2019, 141, 18256-18263.
J. Xu, R. Li, R. Zeng, X. Yan, Q. Zhao, J. Ba, W. Luo, D. Meng, ACS Appl. Mater. Interfaces 2020, 12, 38106-38112.
G.-G. Luo, H.-L. Zhang, Y.-W. Tao, Q.-Y. Wu, D. Tian, Q. Zhang, Inorg. Chem. Front. 2019, 6, 343-354.
M. L. Helm, M. P. Stewart, R. M. Bullock, M. R. DuBois, D. L. DuBois, Science 2011, 333, 863-866.
J. Jiang, K. L. Materna, S. Hedstrom, K. R. Yang, R. H. Crabtree, V. S. Batista, G. W. Brudvig, Angew. Chem. Int. Ed. 2017, 56, 9111-9115;
Angew. Chem. 2017, 129, 9239-9243;
Y. Wu, N. Rodriguez-López, D. Villagrán, Chem. Sci. 2018, 9, 4689-4695;
D. J. Graham, D. G. Nocera, Organometallics 2014, 33, 4994-5001;
H. Lei, H. Fang, Y. Han, W. Lai, X. Fu, R. Cao, ACS Catal. 2015, 5, 5145-5153;
N. Rodríguez-López, Y. Wu, Y. Ge, D. Villagrán, J. Phys. Chem. C 2020, 124, 10265-10271;
I. Bhugun, D. Lexa, J. M. Savéant, J. Am. Chem. Soc. 1996, 118, 3982-3983;
Y. Liu, Y. Han, Z. Zhang, W. Zhang, W. Lai, Y. Wang, R. Cao, Chem. Sci. 2019, 10, 2613-2622.
S. Aroua, T. K. Todorova, V. Mougel, P. Hommes, H.-U. Reissig, M. Fontecave, ChemCatChem 2017, 9, 2099-2105.
S. C. Marinescu, J. R. Winkler, H. B. Gray, Proc. Natl. Acad. Sci. USA 2012, 109, 15127-15131.
W.-C. Xiao, Y.-W. Tao, G.-G. Luo, Int. J. Hydrogen Energy 2020, 45, 8177-8185.
R. Jain, A. A. Mamun, R. M. Buchanan, P. M. Kozlowski, C. A. Grapperhaus, Inorg. Chem. 2018, 57, 13486-13493;
C. A. Calvary, O. Hietsoi, D. T. Hofsommer, H. C. Brun, A. M. Costello, M. S. Mashuta, J. M. Spurgeon, R. M. Buchanan, C. A. Grapperhaus, Eur. J. Inorg. Chem. 2020, 2021, 267-275;
A. Z. Haddad, B. D. Garabato, P. M. Kozlowski, R. M. Buchanan, C. A. Grapperhaus, J. Am. Chem. Soc. 2016, 138, 7844-7847.
C.-B. Li, P. Gong, Y. Yang, H.-Y. Wang, Catal. Lett. 2018, 148, 3158-3164.
B. C. Patra, S. Khilari, R. N. Manna, S. Mondal, D. Pradhan, A. Pradhan, A. Bhaumik, ACS Catal. 2017, 7, 6120-6127.
Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S. Z. Qiao, Nat. Commun. 2014, 5, 3783-3891;
N. Wang, H. Lei, Z. Zhang, J. Li, W. Zhang, R. Cao, Chem. Sci. 2019, 10, 2308-2314;
E. J. Thompson, L. A. Berben, Angew. Chem. Int. Ed. 2015, 54, 11642-11646;
Angew. Chem. 2015, 127, 11808-11812.
T. Shiragami, J. Matsumoto, H. Inoue, M. Yasuda, J. Photochem. Photobiol. C 2005, 6, 227-248;
M. Ertl, E. Woss, G. Knor, Photochem. Photobiol. Sci. 2015, 14, 1826-1830;
H. Zhou, M. Feng, K. Song, B. Liao, Y. Wang, R. Liu, X. Gong, D. Zhang, L. Cao, S. Chen, Nanoscale 2019, 11, 22871-22879.
Y. Li, J. Chen, J. Huang, Y. Hou, L. Lei, W. Lin, Y. Lian, X. Zhonghua, H. H. Yang, Z. Wen, Chem. Commun. 2019, 55, 10884-10887;
A. Maiti, S. K. Srivastava, ACS Appl. Mater. Interfaces 2020, 12, 7057-7070;
C. Gibaja, M. Assebban, I. Torres, M. Fickert, R. Sanchis-Gual, I. Brotons, W. S. Paz, J. J. Palacios, E. G. Michel, G. Abellán, F. Zamora, J. Mater. Chem. A 2019, 7, 22475-22486;
R. Gusmão, Z. Sofer, J. Luxa, M. Pumera, ACS Sustainable Chem. Eng. 2019, 7, 15790-15798.
X. Wang, I. Thiel, A. Fedorov, C. Coperet, V. Mougel, M. Fontecave, Chem. Sci. 2017, 8, 8204-8213;
S. I. Johnson, J. D. Blakemore, B. S. Brunschwig, N. S. Lewis, H. B. Gray, W. A. Goddard, P. Persson, Phys. Chem. Chem. Phys. 2021, 23, 9921-9929.
L. Severy, J. Szczerbinski, M. Taskin, I. Tuncay, F. Brandalise Nunes, C. Cignarella, G. Tocci, O. Blacque, J. Osterwalder, R. Zenobi, M. Iannuzzi, S. D. Tilley, Nat. Chem. 2021, 13, 523-529.
G. Zhao, K. Rui, S. X. Dou, W. Sun, Adv. Funct. Mater. 2018, 28, 1803291;
A. Kumar, S. S, P. Varshney, A. Paul, S. Jeyaraman, Dalton Trans. 2019, 48, 11345-11351;
S. Sinha, A. Sonea, W. Shen, S. S. Hanson, J. J. Warren, Inorg. Chem. 2019, 58, 10454-10461;
D. Lionetti, V. W. Day, J. D. Blakemore, Dalton Trans. 2017, 46, 11779-11789.
N. Kaeffer, A. Morozan, J. Fize, E. Martinez, L. Guetaz, V. Artero, ACS Catal. 2016, 6, 3727-3737;
E. S. Andreiadis, P. A. Jacques, P. D. Tran, A. Leyris, M. Chavarot-Kerlidou, B. Jousselme, M. Matheron, J. Pecaut, S. Palacin, M. Fontecave, V. Artero, Nat. Chem. 2013, 5, 48-53.
A. Le Goff, V. Artero, B. Jousselme, P. D. Tran, N. Guillet, R. Métayé, A. Fihri, S. Palacin, M. Fontecave, Science 2009, 326, 1384-1387.
N. Kornienko, J. Resasco, N. Becknell, C. M. Jiang, Y. S. Liu, K. Nie, X. Sun, J. Guo, S. R. Leone, P. Yang, J. Am. Chem. Soc. 2015, 137, 7448-7455.
A. Lasia, Int. J. Hydrogen Energy 2019, 44, 19484-19518.
B. E. Conway, B. V. Tilak, Electrochim. Acta 2002, 47, 3571-3594.
J. O. M. Bockris, E. C. Potter, J. Electrochem. Soc. 1952, 99, 169-186.
J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 2005, 152, J23-J26.
Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44, 2060-2086.
L. A. Kibler, ChemPhysChem 2006, 7, 985-991.
J. D. Collett, J. A. Krause, H. Guan, J. Chem. Educ. 2020, 98, 592-599.
P. P. Rade, B. Garnaik, Int. J. Polym. Anal. Charact. 2020, 25, 283-299.
S. Anantharaj, P. E. Karthik, S. Noda, Angew. Chem. Int. Ed. 2021, 60, 23051-23067;
Angew. Chem. 2021, 133, 23235-23251.
V. M. Gowri, A. Ajith, S. A. John, Langmuir 2021, 37, 10538-10546.
C. J. Powell, Appl. Surf. Sci. 1995, 89, 141-149.
A. G. Maher, G. Passard, D. K. Dogutan, R. L. Halbach, B. L. Anderson, C. J. Gagliardi, M. Taniguchi, J. S. Lindsey, D. G. Nocera, ACS Catal. 2017, 7, 3597-3606;
B. H. Solis, A. G. Maher, D. K. Dogutan, D. G. Nocera, S. Hammes-Schiffer, Proc. Natl. Acad. Sci. USA 2016, 113, 485-492.
A. Barrozo, M. Orio, ChemSusChem 2019, 12, 4905-4915.
A. Z. Haddad, S. P. Cronin, M. S. Mashuta, R. M. Buchanan, C. A. Grapperhaus, Inorg. Chem. 2017, 56, 11254-11265.
C. K. Williams, G. A. McCarver, A. Lashgari, K. D. Vogiatzis, J. Jiang, Inorg. Chem. 2021, 60, 4915-4923.
A. P. Murthy, J. Theerthagiri, J. Madhavan, J. Phys. Chem. C 2018, 122, 23943-23949.
X. Tian, P. Zhao, W. Sheng, Adv. Mater. 2019, 31, 1808066.
D. Meng, J. Bi, Y. Dong, B. Hao, K. Qin, T. Li, D. Zhu, Chem. Commun. 2020, 56, 2889-2892.
F. Neese, F. Wennmohs, U. Becker, C. Riplinger, J. Chem. Phys. 2020, 152, 224108.
C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789;
A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
J. Kalinowski, F. Wennmohs, F. Neese, J. Chem. Theory Comput. 2017, 13, 3160-3170.
F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057-1065.
V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995-2001.
R. G. Bates, J. B. Macaskill, Pure Appl. Chem. 1978, 50, 1701-1706.