Role of ADME gene polymorphisms on imatinib disposition: results from a population pharmacokinetic study in chronic myeloid leukaemia.
ADME
Imatinib
Pharmacogenetics
Pharmacokinetics
Population pharmacokinetics
Journal
European journal of clinical pharmacology
ISSN: 1432-1041
Titre abrégé: Eur J Clin Pharmacol
Pays: Germany
ID NLM: 1256165
Informations de publication
Date de publication:
Aug 2022
Aug 2022
Historique:
received:
27
01
2022
accepted:
24
05
2022
pubmed:
3
6
2022
medline:
19
7
2022
entrez:
2
6
2022
Statut:
ppublish
Résumé
Imatinib is a substrate of CYP3A4, ABCB1 and ABCG2, and is known to have wide variability in pharmacokinetics (PK). At the same time, a clear relationship between drug levels and response also exists for imatinib in chronic myeloid leukaemia (CML). Therefore, pharmacogenetic-based dosing of imatinib is an attractive proposition. This study aims to characterize the population pharmacokinetics of imatinib in order to identify significant covariates including pharmacogenetic variants. Forty-nine patients with CML were enrolled in the study after being on imatinib for at least 4 consecutive weeks. Steady-state pharmacokinetic sampling was performed either in a sparse (4 samples each, n = 44) or intensive manner (9 samples each, n = 5). An additional pharmacogenetic sample was also collected from all patients. Plasma imatinib levels were estimated using a validated HPLC method. Pharmacogenetic variants were identified using the PharmacoScan array platform. Population pharmacokinetic analysis was carried out using NONMEM v7.2. Seven SNPs within CYP3A4, ABCB1 and ABCG2 genes were evaluated for covariate effect on the clearance of imatinib. Imatinib PK was well characterized using a one-compartment model with zero-order absorption. The clearance and volume of distribution were found to be 10.2 L/h and 389 L respectively. Only SNP rs1128503 of the ABCB1 gene had a small but insignificant effect on imatinib clearance, with a 25% reduction in clearance observed in patients carrying the polymorphism. Twenty-three out of forty-nine patients (47%) carried the polymorphic allele, of whom 17 were heterozygous and six were homozygous. Our study conclusively proves that genetic polymorphisms in the CYP3A4 and ABC family of transporters do not have any role in the personalized dosing of imatinib in CML.
Identifiants
pubmed: 35652931
doi: 10.1007/s00228-022-03345-8
pii: 10.1007/s00228-022-03345-8
doi:
Substances chimiques
Antineoplastic Agents
0
Imatinib Mesylate
8A1O1M485B
Cytochrome P-450 CYP3A
EC 1.14.14.1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1321-1330Subventions
Organisme : Indian Council of Medical Research
ID : 82/14/2012/PHGEN(TF)/ BMS
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Hu Y, Li Q, Hou M et al (2021) Magnitude and temporal trend of the chronic myeloid leukemia: on the basis of the Global Burden of Disease Study 2019. JCO Glob Oncol 1429–1441. https://doi.org/10.1200/GO.21.00194
Peng B, Hayes M, Resta D et al (2004) Pharmacokinetics and pharmacodynamics of imatinib in a phase I trial with chronic myeloid leukemia patients. JCO 22:935–942. https://doi.org/10.1200/JCO.2004.03.050
doi: 10.1200/JCO.2004.03.050
Druker BJ, Talpaz M, Resta DJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037. https://doi.org/10.1056/NEJM200104053441401
doi: 10.1056/NEJM200104053441401
pubmed: 11287972
Bhutani N (2020) Chronic myeloid leukemia in India: a review. https://doi.org/10.5281/ZENODO.3926873
Adeagbo BA, Olugbade TA, Durosinmi MA et al (2017) Population pharmacokinetics of imatinib in Nigerians with chronic myeloid leukemia: clinical implications for dosing and resistance. J Clin Pharmacol 57:1554–1563. https://doi.org/10.1002/jcph.953
doi: 10.1002/jcph.953
pubmed: 28618035
Larson RA, Druker BJ, Guilhot F et al (2008) Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood 111:4022–4028. https://doi.org/10.1182/blood-2007-10-116475
doi: 10.1182/blood-2007-10-116475
pubmed: 18256322
Jiang Z-P, Zhao X-L, Takahashi N et al (2017) Trough concentration and ABCG2 polymorphism are better to predict imatinib response in chronic myeloid leukemia: a meta-analysis. Pharmacogenomics 18:35–56. https://doi.org/10.2217/pgs-2016-0103
doi: 10.2217/pgs-2016-0103
pubmed: 27991849
Picard S, Titier K, Etienne G et al (2007) Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 109:3496–3499. https://doi.org/10.1182/blood-2006-07-036012
doi: 10.1182/blood-2006-07-036012
pubmed: 17192396
Gurney H, Wong M, Balleine RL et al (2007) Imatinib disposition and ABCB1 (MDR1, P-glycoprotein) genotype. Clin Pharmacol Ther 82:33–40. https://doi.org/10.1038/sj.clpt.6100201
doi: 10.1038/sj.clpt.6100201
pubmed: 17495881
Graffelman J, Weir BS (2016) Testing for Hardy-Weinberg equilibrium at biallelic genetic markers on the X chromosome. Heredity 116:558–568. https://doi.org/10.1038/hdy.2016.20
doi: 10.1038/hdy.2016.20
pubmed: 27071844
pmcid: 4868269
Post TM, Freijer JI, Ploeger BA, Danhof M (2008) Extensions to the visual predictive check to facilitate model performance evaluation. J Pharmacokinet Pharmacodyn 35:185–202. https://doi.org/10.1007/s10928-007-9081-1
doi: 10.1007/s10928-007-9081-1
pubmed: 18197467
pmcid: 2798054
Golabchifar A-A, Rezaee S, Dinan NM et al (2016) Population pharmacokinetic analysis of the oral absorption process and explaining intra-subject variability in plasma exposures of imatinib in healthy volunteers. Eur J Drug Metab Pharmacokinet 41:527–539. https://doi.org/10.1007/s13318-015-0292-3
doi: 10.1007/s13318-015-0292-3
pubmed: 26189007
Park G, Park WS, Bae S et al (2016) Population pharmacokinetics of imatinib mesylate in healthy Korean subjects. Transl Clin Pharmacol 24:96. https://doi.org/10.12793/tcp.2016.24.2.96
Amstutz U, Henricks LM, Offer SM et al (2018) Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 Update. Clin Pharmacol Ther 103:210–216. https://doi.org/10.1002/cpt.911
doi: 10.1002/cpt.911
pubmed: 29152729
Relling MV, Schwab M, Whirl-Carrillo M et al (2019) Clinical Pharmacogenetics Implementation Consortium Guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 Update. Clin Pharmacol Ther 105:1095–1105. https://doi.org/10.1002/cpt.1304
doi: 10.1002/cpt.1304
pubmed: 30447069
Abdullah-Koolmees H, van Keulen AM, Nijenhuis M, Deneer VHM (2021) Pharmacogenetics Guidelines: overview and comparison of the DPWG, CPIC, CPNDS, and RNPGx guidelines. Front Pharmacol 11:595219. https://doi.org/10.3389/fphar.2020.595219
doi: 10.3389/fphar.2020.595219
pubmed: 33568995
pmcid: 7868558
Chen Y, Dong X, Wang Q et al (2020) Factors influencing the steady-state plasma concentration of imatinib mesylate in patients with gastrointestinal stromal tumors and chronic myeloid leukemia. Front Pharmacol 11:569843. https://doi.org/10.3389/fphar.2020.569843
doi: 10.3389/fphar.2020.569843
pubmed: 33381028
pmcid: 7768902
Gotta V, Buclin T, Csajka C, Widmer N (2013) Systematic review of population pharmacokinetic analyses of imatinib and relationships with treatment outcomes. Ther Drug Monit 35:150–167. https://doi.org/10.1097/FTD.0b013e318284ef11
doi: 10.1097/FTD.0b013e318284ef11
pubmed: 23503441
Wang Q, Jiang Z-P, Yu E-Q et al (2019) Population pharmacokinetic and pharmacogenetics of imatinib in Chinese patients with chronic myeloid leukemia. Pharmacogenomics 20:251–260. https://doi.org/10.2217/pgs-2018-0139
doi: 10.2217/pgs-2018-0139
pubmed: 30767712
Di Paolo A, Polillo M, Capecchi M et al (2014) The c.480C>G polymorphism of hOCT1 influences imatinib clearance in patients affected by chronic myeloid leukemia. Pharmacogenomics J 14:328–335. https://doi.org/10.1038/tpj.2014.7
doi: 10.1038/tpj.2014.7
pubmed: 24589908
Menon-Andersen D, Mondick JT, Jayaraman B et al (2009) Population pharmacokinetics of imatinib mesylate and its metabolite in children and young adults. Cancer Chemother Pharmacol 63:229–238. https://doi.org/10.1007/s00280-008-0730-x
doi: 10.1007/s00280-008-0730-x
pubmed: 18398615
Schmidli H, Peng B, Riviere G-J et al (2005) Population pharmacokinetics of imatinib mesylate in patients with chronic-phase chronic myeloid leukaemia: results of a phase III study. Br J Clin Pharmacol 60:35–44. https://doi.org/10.1111/j.1365-2125.2005.02372.x
doi: 10.1111/j.1365-2125.2005.02372.x
pubmed: 15963092
pmcid: 1884912
García-Ferrer M, Wojnicz A, Mejía G et al (2019) Utility of therapeutic drug monitoring of imatinib, nilotinib, and dasatinib in chronic myeloid leukemia: a systematic review and meta-analysis. Clin Ther 41:2558-2570.e7. https://doi.org/10.1016/j.clinthera.2019.10.009
doi: 10.1016/j.clinthera.2019.10.009
pubmed: 31812340
021588s024lbl.pdf
Ankathil R (2017) ABCB1 genetic variants in leukemias: current insights into treatment outcomes. PGPM 10:169–181. https://doi.org/10.2147/PGPM.S105208
doi: 10.2147/PGPM.S105208
pubmed: 28546766
pmcid: 5438075
Tulsyan S, Mittal RD, Mittal B (2016) The effect of ABCB1 polymorphisms on the outcome of breast cancer treatment. Pharmgenomics Pers Med 9:47–58. https://doi.org/10.2147/PGPM.S86672
doi: 10.2147/PGPM.S86672
pubmed: 27175090
pmcid: 4854269
Ni L-N, Li J-Y, Miao K-R et al (2011) Multidrug resistance gene (MDR1) polymorphisms correlate with imatinib response in chronic myeloid leukemia. Med Oncol 28:265–269. https://doi.org/10.1007/s12032-010-9456-9
doi: 10.1007/s12032-010-9456-9
pubmed: 20204543
Hsin C-H, Stoffel MS, Gazzaz M et al (2020) Combinations of common SNPs of the transporter gene ABCB1 influence apparent bioavailability, but not renal elimination of oral digoxin. Sci Rep 10:12457. https://doi.org/10.1038/s41598-020-69326-y
doi: 10.1038/s41598-020-69326-y
pubmed: 32719417
pmcid: 7385621
Owen A, Goldring C, Morgan P et al (2005) Relationship between the C3435T and G2677T(A) polymorphisms in the ABCB1 gene and P-glycoprotein expression in human liver. Br J Clin Pharmacol 59:365–370. https://doi.org/10.1111/j.1365-2125.2005.02229.x
doi: 10.1111/j.1365-2125.2005.02229.x
pubmed: 15752383
pmcid: 1884787
Gümüş-Akay G, Rüstemoğlu A, Karadağ A, Sunguroğlu A (2010) Haplotype-based analysis of MDR1/ABCB1 gene polymorphisms in a Turkish population. DNA Cell Biol 29:83–90. https://doi.org/10.1089/dna.2009.0953
doi: 10.1089/dna.2009.0953
pubmed: 20025534
Judson I, Ma P, Peng B et al (2005) Imatinib pharmacokinetics in patients with gastrointestinal stromal tumour: a retrospective population pharmacokinetic study over time. EORTC Soft Tissue and Bone Sarcoma Group. Cancer Chemother Pharmacol 55:379–386. https://doi.org/10.1007/s00280-004-0876-0
doi: 10.1007/s00280-004-0876-0
pubmed: 15592836
Corral Alaejos Á, Zarzuelo Castañeda A, Jiménez Cabrera S et al (2022) External evaluation of population pharmacokinetic models of imatinib in adults diagnosed with chronic myeloid leukaemia. Br J Clin Pharmacol 88:1913–1924. https://doi.org/10.1111/bcp.15122
doi: 10.1111/bcp.15122
pubmed: 34705297