Escitalopram alters local expression of noncanonical stress-related neuropeptides in the rat brain via NPS receptor signaling.
Anxiety
Escitalopram
NMUR2
NPSR
Neuromedin U
Neuropeptide S
Journal
Pharmacological reports : PR
ISSN: 2299-5684
Titre abrégé: Pharmacol Rep
Pays: Switzerland
ID NLM: 101234999
Informations de publication
Date de publication:
Aug 2022
Aug 2022
Historique:
received:
13
02
2022
accepted:
16
05
2022
revised:
12
05
2022
pubmed:
3
6
2022
medline:
6
8
2022
entrez:
2
6
2022
Statut:
ppublish
Résumé
Neuropeptide S (NPS) is a multifunctional regulatory factor that exhibits a potent anxiolytic activity in animal models. However, there are no reports dealing with the potential molecular relationships between the anxiolytic activity of selective serotonin reuptake inhibitors (SSRIs) and NPS signaling, especially in the context of novel stress-related neuropeptides action. The present work therefore focused on gene expression of novel stress neuropeptides in the rat brain after acute treatment with escitalopram and in combination with neuropeptide S receptor (NPSR) blockade. Studies were carried out on adult, male Sprague-Dawley rats that were divided into five groups: animals injected with saline (control) and experimental rats treated with escitalopram (at single dose 10 mg/kg daily), escitalopram and SHA-68, a selective NPSR antagonist (at a single dose of 40 mg/kg), SHA-68 alone and corresponding vehicle (solvent SHA-68) control. To measure anxiety-like behavior and locomotor activity the open field test was performed. All individuals were killed under anaesthesia and the whole brain was excised. Total mRNA was isolated from homogenized samples of the amygdala, hippocampus, hypothalamus, thalamus, cerebellum, and brainstem. Real-time PCR was used for estimation of related NPS, NPSR, neuromedin U (NMU), NMU receptor 2 (NMUR2) and nesfatin-1 precursor nucleobindin-2 (NUCB2) gene expression. Acute escitalopram administration affects the local expression of the examined neuropeptides mRNA in a varied manner depending on brain location. An increase in NPSR and NUCB2 mRNA expression in the hypothalamus and brainstem was abolished by SHA-68 coadministration, while NMU mRNA expression was upregulated after NPSR blockade in the hippocampus and cerebellum. The pharmacological effects of escitalopram may be connected with local NPSR-related alterations in NPS/NMU/NMUR2 and nesfatin-1 gene expression at the level of selected rat brain regions. A novel alternative mode of SSRI action can be therefore cautiously proposed.
Sections du résumé
BACKGROUND
BACKGROUND
Neuropeptide S (NPS) is a multifunctional regulatory factor that exhibits a potent anxiolytic activity in animal models. However, there are no reports dealing with the potential molecular relationships between the anxiolytic activity of selective serotonin reuptake inhibitors (SSRIs) and NPS signaling, especially in the context of novel stress-related neuropeptides action. The present work therefore focused on gene expression of novel stress neuropeptides in the rat brain after acute treatment with escitalopram and in combination with neuropeptide S receptor (NPSR) blockade.
METHODS
METHODS
Studies were carried out on adult, male Sprague-Dawley rats that were divided into five groups: animals injected with saline (control) and experimental rats treated with escitalopram (at single dose 10 mg/kg daily), escitalopram and SHA-68, a selective NPSR antagonist (at a single dose of 40 mg/kg), SHA-68 alone and corresponding vehicle (solvent SHA-68) control. To measure anxiety-like behavior and locomotor activity the open field test was performed. All individuals were killed under anaesthesia and the whole brain was excised. Total mRNA was isolated from homogenized samples of the amygdala, hippocampus, hypothalamus, thalamus, cerebellum, and brainstem. Real-time PCR was used for estimation of related NPS, NPSR, neuromedin U (NMU), NMU receptor 2 (NMUR2) and nesfatin-1 precursor nucleobindin-2 (NUCB2) gene expression.
RESULTS
RESULTS
Acute escitalopram administration affects the local expression of the examined neuropeptides mRNA in a varied manner depending on brain location. An increase in NPSR and NUCB2 mRNA expression in the hypothalamus and brainstem was abolished by SHA-68 coadministration, while NMU mRNA expression was upregulated after NPSR blockade in the hippocampus and cerebellum.
CONCLUSIONS
CONCLUSIONS
The pharmacological effects of escitalopram may be connected with local NPSR-related alterations in NPS/NMU/NMUR2 and nesfatin-1 gene expression at the level of selected rat brain regions. A novel alternative mode of SSRI action can be therefore cautiously proposed.
Identifiants
pubmed: 35653031
doi: 10.1007/s43440-022-00374-z
pii: 10.1007/s43440-022-00374-z
doi:
Substances chimiques
Anti-Anxiety Agents
0
Neuropeptides
0
RNA, Messenger
0
Receptors, Neuropeptide
0
Escitalopram
4O4S742ANY
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
637-653Informations de copyright
© 2022. The Author(s) under exclusive licence to Maj Institute of Pharmacology Polish Academy of Sciences.
Références
Gupta PR, Prabhavalkar K. Combination therapy with neuropeptides for the treatment of anxiety disorder. Neuropeptides. 2021;86: 102127.
pubmed: 33607407
doi: 10.1016/j.npep.2021.102127
Hökfelt T, Barde S, Xu ZD, Kuteeva E, Rüegg J, Le Maitre E, et al. Neuropeptide and small transmitter coexistence: fundamental studies and relevance to mental illness. Front Neural Circuits. 2018;12:106.
pubmed: 30627087
pmcid: 6309708
doi: 10.3389/fncir.2018.00106
Alldredge B. Pathogenic involvement of neuropeptides in anxiety and depression. Neuropeptides. 2010;44(3):215–24.
pubmed: 20096456
doi: 10.1016/j.npep.2009.12.014
Rotzinger S, Lovejoy DA, Tan LA. Behavioral effects of neuropeptides in rodent models of depression and anxiety. Peptides. 2010;31(4):736–56.
pubmed: 20026211
doi: 10.1016/j.peptides.2009.12.015
Reinscheid RK, Ruzza C. Pharmacology, physiology and genetics of the neuropeptide S system. Pharmaceuticals (Basel). 2021;14(5):401.
doi: 10.3390/ph14050401
Pape HC, Jüngling K, Seidenbecher T, Lesting J, Reinscheid RK. Neuropeptide S: a transmitter system in the brain regulating fear and anxiety. Neuropharmacology. 2010;58(1):29–34.
pubmed: 19523478
doi: 10.1016/j.neuropharm.2009.06.001
Reinscheid RK, Xu YL. Neuropeptide S and its receptor: a newly deorphanized G protein-coupled receptor system. Neuroscientist. 2005;11(6):532–8.
pubmed: 16282594
doi: 10.1177/1073858405276405
Pulkkinen V, Haataja R, Hannelius U, Helve O, Pitkänen OM, Karikoski R, et al. G protein-coupled receptor for asthma susceptibility associates with respiratory distress syndrome. Ann Med. 2006;38:357–66.
pubmed: 16938805
doi: 10.1080/07853890600756453
Xu YL, Gall CM, Jackson VR, Civelli O, Reinscheid RK. Distribution of neuropeptide S receptor mRNA and neurochemical characteristics of neuropeptide S-expressing neurons in the rat brain. J Comp Neurol. 2007;500(1):84–102.
pubmed: 17099900
doi: 10.1002/cne.21159
Clark SD, Duangdao DM, Schulz S, Zhang L, Liu X, Xu YL, Reinscheid RK. Anatomical characterization of the neuropeptide S system in the mouse brain by in situ hybridization and immunohistochemistry. J Comp Neurol. 2011;519(10):1867–93.
pubmed: 21452235
doi: 10.1002/cne.22606
Xu YL, Reinscheid RK, Huitron-Resendiz S, Clark SD, Wang Z, et al. Neuropeptide S: a neuropeptide promoting arousal and anxiolytic-like effects. Neuron. 2004;43(4):487–97.
pubmed: 15312648
doi: 10.1016/j.neuron.2004.08.005
Tobinski AM, Rappeneau V. Role of the neuropeptide S system in emotionality, stress responsiveness and addiction-like behaviours in rodents: relevance to stress-related disorders. Pharmaceuticals (Basel). 2021;14(8):780.
doi: 10.3390/ph14080780
Beck B, Fernette B, Stricker-Krongrad A. Peptide S is a novel potent inhibitor of voluntary and fast-induced food intake in rats. Biochem Biophys Res Commun. 2005;332(3):859–65.
pubmed: 15919054
doi: 10.1016/j.bbrc.2005.05.029
Cannella N, Economidou D, Kallupi M, Stopponi S, Heiling M, Massi M, et al. Persistent increase of alcohol-seeking evoked by neuropeptide S: an effect mediated by the hypothalamic hypocretin system. Neuropsychopharmacol. 2009;34:2125–34.
doi: 10.1038/npp.2009.37
Bengoetxea X, Goedecke L, Remmes J, Blaesse P, Grosch T, Lesting J, et al. Human-specific neuropeptide S receptor variants regulate fear extinction in the basal amygdala of male and female mice depending on threat salience. Biol Psychiatry. 2021;90(3):145–55.
pubmed: 33902914
doi: 10.1016/j.biopsych.2021.02.967
Grund T, Neumann ID. Neuropeptide S induces acute anxiolysis by phospholipase C-dependent signaling within the medial amygdala. Neuropsychopharmacology. 2018;43(5):1156–63.
pubmed: 28805209
doi: 10.1038/npp.2017.169
Jüngling K, Seidenbecher T, Sosulina L, Lesting J, Sangha S, Clark SD. Neuropeptide S-mediated control of fear expression and extinction: role of intercalated GABAergic neurons in the amygdala. Neuron. 2008;59(2):298–310.
pubmed: 18667157
pmcid: 2610688
doi: 10.1016/j.neuron.2008.07.002
Leonard SK, Dwyer JM, Sukoff Rizzo SJ, Platt B, Logue SF, Neal SJ, et al. Pharmacology of neuropeptide S in mice: therapeutic relevance to anxiety disorders. Psychopharmacology. 2008;197(4):601–11.
pubmed: 18311561
doi: 10.1007/s00213-008-1080-4
Si W, Aluisio L, Okamura N, Clark SD, Fraser I, Sutton SW, et al. Neuropeptide S stimulates dopaminergic neurotransmission in the medial prefrontal cortex. J Neurochem. 2010;115(2):475–82.
pubmed: 20722970
pmcid: 2970681
doi: 10.1111/j.1471-4159.2010.06947.x
Donner J, Haapakoski R, Ezer S, Melén E, Pirkola S, Gratacòs M, et al. Assessment of the neuropeptide S system in anxiety disorders. Biol Psychiatry. 2010;68(5):474–83.
pubmed: 20705147
doi: 10.1016/j.biopsych.2010.05.039
Domschke K, Reif A, Weber H, Richter J, Hohoff C, Ohrmann P, et al. Neuropeptide S receptor gene—converging evidence for a role in panic disorder. Mol Psychiatry. 2011;16(9):938–48.
pubmed: 20603625
doi: 10.1038/mp.2010.81
Ebner K, Rjabokon A, Pape HC, Singewald N. Increased in vivo release of neuropeptide S in the amygdala of freely moving rats after local depolarisation and emotional stress. Amino Acids. 2011;41(4):991–6.
pubmed: 21861171
pmcid: 3172411
doi: 10.1007/s00726-011-1058-0
Fendt M, Imobersteg S, Bürki H, McAllister KH, Sailer AW. Intra-amygdala injections of neuropeptide S block fear-potentiated startle. Neurosci Lett. 2010;474(3):154–7.
pubmed: 20298749
doi: 10.1016/j.neulet.2010.03.028
Adori C, Barde S, Bogdanovic N, Uhlén M, Reinscheid RR, Kovacs GG, et al. Neuropeptide S- and Neuropeptide S receptor-expressing neuron populations in the human pons. Front Neuroanat. 2015;9:126.
pubmed: 26441556
pmcid: 4585187
doi: 10.3389/fnana.2015.00126
Teranishi H, Hanada R, Neuromedin U. A key molecule in metabolic disorders. Int J Mol Sci. 2021;22(8):4238.
pubmed: 33921859
pmcid: 8074168
doi: 10.3390/ijms22084238
Martinez VG, O’Driscoll L. Neuromedin U: a multifunctional neuropeptide with pleiotropic roles. Clin Chem. 2015;61(3):471–82.
pubmed: 25605682
doi: 10.1373/clinchem.2014.231753
Malendowicz LK, Rucinski M. Neuromedins NMU and NMS: an updated overview of their functions. Front Endocrinol (Lausanne). 2021;12: 713961.
doi: 10.3389/fendo.2021.713961
Brighton PJ, Wise A, Dass NB, Willars GB. Paradoxical behavior of neuromedin U in isolated smooth muscle cells and intact tissue. J Pharmacol Exp Ther. 2008;325(1):154–64.
pubmed: 18180374
doi: 10.1124/jpet.107.132803
Fujii R, Hosoya M, Fukusumi S, Kawamata Y, Habata Y, Hinuma S, et al. Identification of neuromedin U as the cognate ligand of the orphan G protein-coupled receptor FM-3. J Biol Chem. 2000;275(28):21068–74.
pubmed: 10783389
doi: 10.1074/jbc.M001546200
Ballesta J, Carlei F, Bishop AE, Steel JH, Gibson SJ, Fahey M, et al. Occurrence and developmental pattern of neuromedin U-immunoreactive nerves in the gastrointestinal tract and brain of the rat. Neuroscience. 1988;25(3):797–816.
pubmed: 3405430
doi: 10.1016/0306-4522(88)90037-1
Szekeres PG, Muir AI, Spinage LD, Miller JE, Butler SI, Smith A, et al. Neuromedin U is a potent agonist at the orphan G protein-coupled receptor FM3. J Biol Chem. 2000;275(27):20247–2050.
pubmed: 10811630
doi: 10.1074/jbc.C000244200
Howard AD, Wang R, Pong SS, Mellin TN, Strack A, Guan XM, et al. Identification of receptors for neuromedin U and its role in feeding. Nature. 2000;406(6791):70–4.
pubmed: 10894543
doi: 10.1038/35017610
Hsu SH, Luo CW. Molecular dissection of G protein preference using Gsalpha chimeras reveals novel ligand signaling of GPCRs. Am J Physiol Endocrinol Metab. 2007;293(4):E1021–9.
pubmed: 17652154
doi: 10.1152/ajpendo.00003.2007
Shan L, Qiao X, Crona JH, Behan J, Wang S, Laz T, et al. Identification of a novel neuromedin U receptor subtype expressed in the central nervous system. J Biol Chem. 2000;275:39482–6.
pubmed: 11010960
doi: 10.1074/jbc.C000522200
Graham ES, Turnbull Y, Fotheringham P, Nilaweera K, Mercer JG, Morgan PJ, et al. Neuromedin U and Neuromedin U receptor-2 expression in the mouse and rat hypothalamus: effects of nutritional status. J Neurochem. 2003;87(5):1165–73.
pubmed: 14622096
doi: 10.1046/j.1471-4159.2003.02079.x
Gartlon J, Szekeres P, Pullen M, Sarau HM, Aiyar N, Shabon U, et al. Localisation of NMU1R and NMU2R in human and rat central nervous system and effects of neuromedin-U following central administration in rats. Psychopharmacology. 2004;177:1–14.
pubmed: 15205870
doi: 10.1007/s00213-004-1918-3
Hanada R, Nakazato M, Murakami N, Sakihara S, Yoshimatsu H, Toshinai K, et al. A role for neuromedin U in stress response. Biochem Biophys Res Commun. 2001;289(1):225–8.
pubmed: 11708803
doi: 10.1006/bbrc.2001.5945
Tanaka M, Telegdy G. Neurotransmissions of antidepressant-like effects of neuromedin U-23 in mice. Behav Brain Res. 2014;259:196–9.
pubmed: 24239690
doi: 10.1016/j.bbr.2013.11.005
Telegdy G, Adamik A. Anxiolytic action of neuromedin-U and neurotransmitters involved in mice. Regul Pept. 2013;186:137–40.
pubmed: 23892031
doi: 10.1016/j.regpep.2013.07.008
Wren AM, Small CJ, Abbott CR, Jethwa PH, Kennedy AR, Murphy KG, et al. Hypothalamic actions of neuromedin U. Endocrinology. 2002;143(11):4227–34.
pubmed: 12399416
doi: 10.1210/en.2002-220308
Zeng H, Gragerov A, Hohmann JG, Pavlova MN, Schimpf BA, Xu H, et al. Neuromedin U receptor 2-deficient mice display differential responses in sensory perception, stress, and feeding. Mol Cell Biol. 2006;26(24):9352–63.
pubmed: 17030627
pmcid: 1698522
doi: 10.1128/MCB.01148-06
Vallöf D, Kalafateli AL, Jerlhag E. Brain region-specific neuromedin U signalling regulates alcohol-related behav-iours and food intake in rodents. Addict Biol. 2020;25: e12764.
pubmed: 31069918
doi: 10.1111/adb.12764
Kasper JM, Smith AE, Hommel JD. Cocaine-evoked locomotor activity negatively correlates with the expression of neuromedin U receptor 2 in the nucleus accumbens. Front Behav Neurosci. 2018;12:271.
pubmed: 30483076
pmcid: 6243026
doi: 10.3389/fnbeh.2018.00271
Schalla MA, Stengel A. Current understanding of the role of nesfatin-1. J Endocr Soc. 2018;2(10):1188–206.
pubmed: 30302423
pmcid: 6169466
doi: 10.1210/js.2018-00246
Pałasz A, Krzystanek M, Worthington J, Czajkowska B, Kostro K, Wiaderkiewicz R, et al. Nesfatin-1, a unique regulatory neuropeptide of the brain. Neuropeptides. 2012;46(3):105–12.
pubmed: 22225987
doi: 10.1016/j.npep.2011.12.002
Garcia-Galiano D, Navarro VM, Roa J, Ruiz-Pino F, Sanchez-Garrido MA, Pineda R, et al. The anorexigenic neuropeptide, nesfatin-1, is indispensable for normal puberty onset in the female rat. J Neurosci. 2010;30:7783–92.
pubmed: 20534827
pmcid: 6632688
doi: 10.1523/JNEUROSCI.5828-09.2010
Gonzalez R, Kerbel B, Chun A, Unniappan S. Molecular, cellular and physiological evidences for the anorexigenic actions of nesfatin-1 in goldfish. PLoS ONE. 2010;5(12): e15201.
pubmed: 21151928
pmcid: 2997068
doi: 10.1371/journal.pone.0015201
Rupp SK, Wölk E, Stengel A. Nesfatin-1 receptor: distribution, signaling and increasing evidence for a G protein-coupled receptor—a systematic review. Front Endocrinol (Lausanne). 2021;12: 740174.
doi: 10.3389/fendo.2021.740174
Stengel A, Goebel M, Tache Y. Nesfatin-1: a novel inhibitory regulator of food intake and body weight. Obes Rev. 2011;12:261–71.
pubmed: 20546141
pmcid: 4079085
doi: 10.1111/j.1467-789X.2010.00770.x
Shimizu H, Oh-I S, Okada S, Mori M. Nesfatin-1: an overview and future clinical application. Endocr J. 2009;56:537–43.
pubmed: 19461159
doi: 10.1507/endocrj.K09E-117
Foo KS, Brismar H, Broberger C. Distribution and neuropeptide coexistence of nucleobindin-2 mRNA/nesfatin-like immunoreactivity in the rat CNS. Neuroscience. 2008;156:563–79.
pubmed: 18761059
doi: 10.1016/j.neuroscience.2008.07.054
Pałasz A, Rojczyk E, Siwiec A, Janas-Kozik M. Nesfatin-1 in the neurochemistry of eating disorders. Psychiatr Pol. 2020;54(2):209–22.
pubmed: 32772055
doi: 10.12740/PP/102659
Stengel A, Tache Y. Nesfatin-1: role as a possible new potent regulator of food intake. Regul Pept. 2010;9:18–23.
doi: 10.1016/j.regpep.2010.05.002
Weibert E, Hofmann T, Stengel A. Role of nesfatin-1 in anxiety, depression and the response to stress. Psychoneuroendocrinology. 2019;100:58–66.
pubmed: 30292960
doi: 10.1016/j.psyneuen.2018.09.037
Ge JF, Xu YY, Qin G, Pan XY, Cheng JQ, Chen FH. Nesfatin-1, a potent anorexic agent, decreases exploration and induces anxiety-like behavior in rats without altering learning or memory. Brain Res. 2015;1629:171–81.
pubmed: 26498879
doi: 10.1016/j.brainres.2015.10.027
Merali Z, Cayer C, Kent P, Anisman H. Nesfatin-1 increases anxiety- and fear-related behaviors in the rat. Psychopharmacology. 2008;201:115–23.
pubmed: 18670764
doi: 10.1007/s00213-008-1252-2
Goebel M, Stengel A, Wang L, Lambrecht NW, Taché Y. Nesfatin-1 immunoreactivity in rat brain and spinal cord autonomic nuclei. Neurosci Lett. 2009;452:241–6.
pubmed: 19348732
pmcid: 2674947
doi: 10.1016/j.neulet.2009.01.064
Könczöl K, Bodnar I, Zelena D, Pinter O, Papp RS, Palkovits M, et al. Nesfatin-1/NUCB2 may participate in the activation of the hypothalamic-pituitary-adrenal axis in rats. Neurochem Int. 2010;53:189–97.
doi: 10.1016/j.neuint.2010.04.012
Tanida M, Mori M. Nesfatin-1 stimulates renal sympathetic nerve activity in rats. NeuroReport. 2011;2:309–12.
doi: 10.1097/WNR.0b013e328346107f
Yosten GLC, Samson WK. The anorexigenic and hypertensive effects of nesfatin-1 are reversed by pretreatment with an oxytocin receptor antagonist. Am J Physiol Regul Integr Comp Physiol. 2010;298:R1642–7.
pubmed: 20335376
pmcid: 2886698
doi: 10.1152/ajpregu.00804.2009
Okere B, Xu L, Roubos EW, Sonetti D, Kozicz T. Restraint stress alters the secretory activity of neurons co-expressing urocortin-1, cocaine- and amphetamine-regulated transcript peptide and nesfatin-1 in the mouse Edinger-Westphal nucleus. Brain Res. 2010;1317:92–9.
pubmed: 20043894
doi: 10.1016/j.brainres.2009.12.053
Bonnet MS, Pecchi E, Trouslard J, Jean A, Dallaporta M, Troadec JD. Central nesfatin-1 expressing neurons are sensitive to peripheral imflammatory stimulus. J Neuroinflamm. 2009;6:27.
doi: 10.1186/1742-2094-6-27
Yoshida N, Maejima Y, Sedbazar U, Ando A, Kurita H, Damdindorj B, et al. Stressor-responsive central nesfatin-1 activates corticotropin-releasing hormone, noradrenaline and serotonin neurons and evokes hypothalamic-pituitary-adenal axis. Aging. 2010;2:775–84.
pubmed: 20966530
pmcid: 3006020
doi: 10.18632/aging.100207
Owens MJ, Knight DL, Nemeroff CB. Second-generation SSRIs: human monoamine transporter binding profile of escitalopram and R-fluoxetine. Biol Psychiatry. 2001;50:345–50.
pubmed: 11543737
doi: 10.1016/S0006-3223(01)01145-3
Ranjbar S, Pai N, Deng C. The association of antidepressant medication and body weight gain. Online J Health Allied Sci. 2013;12:1–9.
Okamura N, Habay SA, Zeng J, Chamberlin AR, Reinscheid RK. Synthesis and pharmacological in vitro and in vivo profile of 3-oxo-1,1-diphenyl-tetrahydro-oxazolo[3,4-a]pyrazine-7-carboxylic acid 4-fluoro-benzylamide (SHA68), a selective antagonist of the neuropeptide S receptor. J Pharmacol Exp Ther. 2008;325:893–901.
pubmed: 18337476
doi: 10.1124/jpet.107.135103
Shukla AK, Reinhart C, Michel H. Dimethylsulphoxide as a tool to increase functional expression of heterologously produced GPCRs in mammalian cells. FEBS Lett. 2006;580:4261–5.
pubmed: 16831432
doi: 10.1016/j.febslet.2006.05.064
Xia H, Liu L, Reinhart C, Michel H. Heterologous expression of human neuromedin U receptor 1 and its subsequent solubilization and purification. Biochim Biophys Acta. 2008;1778:2203–9.
pubmed: 18598671
doi: 10.1016/j.bbamem.2008.05.017
Talmont F, Mollereau C, Zajac JM. Expression of opioid and anti-opioid receptors in Chinese hamster ovary cells after exposure to dimethyl sulfoxide. Anal Biochem. 2012;420(1):99–100. https://doi.org/10.1016/j.ab.2011.09.001 .
doi: 10.1016/j.ab.2011.09.001
pubmed: 21951781
Cavaletti G, Oggioni N, Sala F, Pezzoni G, Cavalletti E, Marmiroli P, et al. Effect on the peripheral nervous system of systemically administered dimethylsulfoxide in the rat: a neurophysiological and pathological study. Toxicol Lett. 2000;118(1–2):103–7. https://doi.org/10.1016/s0378-4274(00)00269-1 .
doi: 10.1016/s0378-4274(00)00269-1
pubmed: 11137315
Cavas M, Beltrán D, Navarro JF. Behavioural effects of dimethyl sulfoxide (DMSO): changes in sleep architecture in rats. Toxicol Lett. 2005;157(3):221–32.
pubmed: 15917147
doi: 10.1016/j.toxlet.2005.02.003
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.
pubmed: 11846609
doi: 10.1006/meth.2001.1262
Leonard SK, Ring RH. Immunohistochemical localization of the neuropeptide S receptor in the rat central nervous system. Neuroscience. 2011;172:153–63.
pubmed: 20950671
doi: 10.1016/j.neuroscience.2010.10.020
Jiang JH, Peng YL, Zhang PJ, Xue HX, He Z, Liang XY, Chang M. The ventromedial hypothalamic nucleus plays an important role in anxiolytic-like effect of neuropeptide S. Neuropeptides. 2018;67:36–44.
pubmed: 29195839
doi: 10.1016/j.npep.2017.11.004
Gross CT, Canteras NS. The many paths to fear. Nat Rev Neurosci. 2012;13(9):651–8.
pubmed: 22850830
doi: 10.1038/nrn3301
Pringle A, Browning M, Cowen PJ, Harmer CJ. A cognitive neuropsychological model of antidepressant drug action. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(7):1586–92. https://doi.org/10.1016/j.pnpbp.2010.07.022 .
doi: 10.1016/j.pnpbp.2010.07.022
pubmed: 20673783
Harmer CJ, Goodwin GM, Cowen PJ. Why do antidepressants take so long to work? A cognitive neuropsychological model of anti-depressant drug action. Br J Psychiatry. 2009;195:102–8.
pubmed: 19648538
doi: 10.1192/bjp.bp.108.051193
Outhred T, Das P, Felmingham KL, Bryant RA, Nathan PJ, Malhi GS, Kemp AH. Impact of acute administration of escitalopram on the processing of emotional and neutral images: a randomized crossover fMRI study of healthy women. J Psychiatry Neurosci. 2014;39(4):267–75. https://doi.org/10.1503/jpn.130118 .
doi: 10.1503/jpn.130118
pubmed: 24690370
pmcid: 4074238
Pizzagalli DA. Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacology. 2011;36:183–206.
pubmed: 20861828
doi: 10.1038/npp.2010.166
Murphy SE, Norbury R, O’Sullivan U, Cowen PJ, Harmer CJ. Effect of a single dose of citalopram on amygdala response to emotional faces. Br J Psychiatry. 2009;194(6):535–40. https://doi.org/10.1192/bjp.bp.108.056093 .
doi: 10.1192/bjp.bp.108.056093
pubmed: 19478294
pmcid: 2802527
Pałasz A, Rojczyk E. Neuroleptics affect neuropeptide S and NPSR mRNA levels in the rat brain. J Mol Neurosci. 2015;57(3):352–7.
pubmed: 26227793
doi: 10.1007/s12031-015-0625-3
Cannella N, Kallupi M, Ruggeri B, Ciccocioppo R, Ubaldi M. The role of the neuropeptide S system in addiction: focus on its interaction with the CRF and hypocretin/orexin neurotransmission. Prog Neurobiol. 2013;100:48–59.
pubmed: 23041581
doi: 10.1016/j.pneurobio.2012.09.005
Ubaldi M, Giordano A, Severi I, Li H, Kallupi M, De Guglielmo G, Ruggeri B, et al. Activation of hypocretin-1/orexin-a neurons projecting to the bed nucleus of the stria terminalis and paraventricular nucleus is critical for reinstatement of alcohol seeking by neuropeptide S. Biol Psychiatry. 2016;79:452–62.
pubmed: 26055195
doi: 10.1016/j.biopsych.2015.04.021
Pałasz A, Bandyszewska M, Rojczyk E, Wiaderkiewicz R. Effect of extended olanzapine administration on POMC and neuropeptide Y mRNA levels in the male rat amygdala and hippocampus. Pharmacol Rep. 2016;68:292–6.
pubmed: 26922530
doi: 10.1016/j.pharep.2015.09.012
Sattin A, Pekary AE, Blood J. Escitalopram regulates expression of TRH and TRH-like peptides in rat brain and peripheral tissues. Neuroendocrinology. 2008;88:135–46.
pubmed: 18354249
doi: 10.1159/000121595
Kursungoz C, Ak M, Yanik T. Efects of risperidone treatment on the expression of hypothalamic neuropeptide in appetite regulation in Wistar rats. Brain Res. 2015;1596:146–55.
pubmed: 25449893
doi: 10.1016/j.brainres.2014.10.070
Barone I, Melani R, Mainardi M, Scabia G, Scali M, Dattilo A, et al. Fluoxetine modulates the activity of hypothalamic POMC neurons via mTOR signaling. Mol Neurobiol. 2018;55:9267–79.
pubmed: 29663284
doi: 10.1007/s12035-018-1052-6
Soga T, Wong DW, Clarke IJ, Parhar IS. Citalopram (antidepressant) administration causes sexual dysfunction in male mice through RF-amide related peptide in the dorsomedial hypothalamus. Neuropharmacology. 2010;59:77–85.
pubmed: 20381503
doi: 10.1016/j.neuropharm.2010.03.018
Sasaki-Hamada S, Maeno Y, Yabe M, Ishibashi H. Neuromedin U modulates neuronal excitability in rat hippocampal slices. Neuropeptides. 2021;89: 102168.
pubmed: 34243110
doi: 10.1016/j.npep.2021.102168
Kaisho T, Nagai H, Asakawa T, Suzuki N, Fujita H, Matsumiya K, et al. Effects of peripheral administration of a Neuromedin U receptor 2-selective agonist on food intake and body weight in obese mice. Int J Obes (Lond). 2017;41(12):1790–7.
doi: 10.1038/ijo.2017.176
Nakahara K, Katayama T, Maruyama K, Ida T, Mori K, Miyazato M, et al. Comparison of feeding suppression by the anorexigenic hormones neuromedin U and neuromedin S in rats. J Endocrinol. 2010;207:185–93.
pubmed: 20732934
doi: 10.1677/JOE-10-0081
McCue DL, Kasper JM, Hommel JD. Regulation of motivation for food by neuromedin U in the paraventricular nucleus and the dorsal raphe nucleus. Int J Obes (Lond). 2017;41(1):120–8.
doi: 10.1038/ijo.2016.178
Benzon C, Johnson S, McCue D, Li D, Green T, Hommel J. Neuromedin U receptor 2 knockdown in the paraventricular nucleus modifies behavioral responses to obesogenic high-fat food and leads to increased body weight. Neuroscience. 2014;258:270–9.
pubmed: 24269937
doi: 10.1016/j.neuroscience.2013.11.023
Peng YL, Ha RW, Chang M, Zhang L, Zhang RS, Li W, et al. Central Neuropeptide S inhibits food intake in mice through activation of Neuropeptide S receptor. Peptides. 2010;31:2259–63.
pubmed: 20800637
doi: 10.1016/j.peptides.2010.08.015
Smith KL, Patterson M, Dhillo WS, Patel SR, Semjonous NM, Gardiner JV, et al. Neuropeptide S stimulates the hypothalamo-pituitary-adrenal axis and inhibits food intake. Endocrinology. 2006;47:3510–8.
doi: 10.1210/en.2005-1280
Nakahara K, Akagi A, Shimizu S, Tateno S, Qattali AW, Mori K, et al. Involvement of endogenous neuromedin U and neuromedin S in thermoregulation. Biochem Biophys Res Commun. 2016;470(4):930–5.
pubmed: 26826380
doi: 10.1016/j.bbrc.2016.01.155
Ahnaou A, Drinkenburg WH. Neuromedin U(2) receptor signaling mediates alteration of sleep-wake architecture in rats. Neuropeptides. 2011;45(2):165–74.
pubmed: 21296417
doi: 10.1016/j.npep.2011.01.004
Pałasz A, Żarczyński P, Bogus K, Mordecka-Chamera K, Della Vecchia A, Skałbania J, et al. Modulatory effect of olanzapine on SMIM20/phoenixin, NPQ/spexin and NUCB2/nesfatin-1 gene expressions in the rat brainstem. Pharmacol Rep. 2021;73(4):1188–94.
pubmed: 33928538
pmcid: 8413215
doi: 10.1007/s43440-021-00267-7
Wei Y, Li J, Wang H, Wang G. NUCB2/nesfatin-1: Expression and functions in the regulation of emotion and stress. Prog Neuropsychopharmacol Biol Psychiatry. 2018;81:221–7.
pubmed: 28963067
doi: 10.1016/j.pnpbp.2017.09.024