TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines.


Journal

Nature methods
ISSN: 1548-7105
Titre abrégé: Nat Methods
Pays: United States
ID NLM: 101215604

Informations de publication

Date de publication:
07 2022
Historique:
received: 20 09 2021
accepted: 25 04 2022
pubmed: 3 6 2022
medline: 12 7 2022
entrez: 2 6 2022
Statut: ppublish

Résumé

TrackMate is an automated tracking software used to analyze bioimages and is distributed as a Fiji plugin. Here, we introduce a new version of TrackMate. TrackMate 7 is built to address the broad spectrum of modern challenges researchers face by integrating state-of-the-art segmentation algorithms into tracking pipelines. We illustrate qualitatively and quantitatively that these new capabilities function effectively across a wide range of bio-imaging experiments.

Identifiants

pubmed: 35654950
doi: 10.1038/s41592-022-01507-1
pii: 10.1038/s41592-022-01507-1
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

829-832

Subventions

Organisme : Medical Research Council
ID : MR/T027924/1
Pays : United Kingdom

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Sbalzarini, I. F. & Koumoutsakos, P. Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol. 151, 182–195 (2005).
doi: 10.1016/j.jsb.2005.06.002
Chenouard, N., Bloch, I. & Olivo-Marin, J.-C. Multiple hypothesis tracking for cluttered biological image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2736–3750 (2013).
doi: 10.1109/TPAMI.2013.97
Piccinini, F., Kiss, A. & Horvath, P. CellTracker (not only) for dummies. Bioinformatics 32, 955–957 (2016).
doi: 10.1093/bioinformatics/btv686
Tinevez, J.-Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).
doi: 10.1016/j.ymeth.2016.09.016
McQuin, C. et al. CellProfiler 3.0: Next-generation image processing for biology. PLoS Biol. 16, e2005970 (2018).
doi: 10.1371/journal.pbio.2005970
Chenouard, N. et al. Objective comparison of particle tracking methods. Nat. Methods 11, 281–289 (2014).
doi: 10.1038/nmeth.2808
Moen, E. et al. Deep learning for cellular image analysis. Nat. Methods 16, 1233–1246 (2019).
doi: 10.1038/s41592-019-0403-1
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
doi: 10.1038/nmeth.2019
Sage, D., Neumann, F. R., Hediger, F., Gasser, S. M. & Unser, M. Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics. IEEE Trans. Image Process. 14, 1372–1383 (2005).
doi: 10.1109/TIP.2005.852787
Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).
doi: 10.1038/s41592-019-0582-9
Arganda-Carreras, I. et al. Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33, 2424–2426 (2017).
doi: 10.1093/bioinformatics/btx180
Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).
doi: 10.1038/s41592-020-01018-x
Legland, D., Arganda-Carreras, I. & Andrey, P. MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 32, 3532–3534 (2016).
pubmed: 27412086
Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell detection with star-convex polygons. in Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 (eds. Frangi, A. F., Schnabel, J. A., Davatzikos, C., Alberola-López, C. & Fichtinger, G.) 265–273 (Springer International Publishing, 2018).
von Chamier, L. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat. Commun. 12, 2276 (2021).
doi: 10.1038/s41467-021-22518-0
Caicedo, J. C. et al. Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl. Nat. Methods 16, 1247–1253 (2019).
doi: 10.1038/s41592-019-0612-7
Lutolf, M. P., Doyonnas, R., Havenstrite, K., Koleckar, K. & Blau, H. M. Perturbation of single hematopoietic stem cell fates in artificial niches. Integr. Biol. Quant. Biosci. Nano Macro 1, 59–69 (2009).
Haase, R. et al. CLIJ: GPU-accelerated image processing for everyone. Nat. Methods 17, 5–6 (2020).
doi: 10.1038/s41592-019-0650-1
Haase, R. clij/TrackMate-clij2: 2.5.1.3-doi. (Zenodo, 2022); https://doi.org/10.5281/zenodo.5983244
Regot, S., Hughey, J. J., Bajar, B. T., Carrasco, S. & Covert, M. W. High-sensitivity measurements of multiple kinase activities in live single cells. Cell 157, 1724–1734 (2014).
doi: 10.1016/j.cell.2014.04.039
Kudo, T. et al. Live-cell measurements of kinase activity in single cells using translocation reporters. Nat. Protoc. 13, 155–169 (2018).
doi: 10.1038/nprot.2017.128
Jacquemet, G. Combining StarDist and TrackMate Example 1—Breast Cancer Cell Dataset (2020); https://doi.org/10.5281/zenodo.4034976
Jacquemet, G. et al. FiloQuant reveals increased filopodia density during breast cancer progression. J. Cell Biol. 216, 3387–3403 (2017).
doi: 10.1083/jcb.201704045
Jacquemet, G., Pylvänäinen, J. W. & Tinevez, J.-Y. Tracking Breast Cancer Cells Migrating Collectively and Imaged in Fluorescence with TrackMate-Cellpose (2022); https://doi.org/10.5281/zenodo.5864646
Tinevez, J.-Y., Jacquemet, G. & Pylvänäinen, J. W. Tracking Label Images with TrackMate (2021); https://doi.org/10.5281/zenodo.5221424
Fazeli, E. et al. Automated cell tracking using StarDist and TrackMate. F1000Res. 9, 1279 (2020).
doi: 10.12688/f1000research.27019.1
Tinevez, J.-Y., Jacquemet, G. & Roy, N. H. T cells Migration Followed with TrackMate (2021); https://doi.org/10.5281/zenodo.5206119
Roy, N. H. & Jacquemet, G. Combining StarDist and TrackMate Example 2—T Cell Dataset (2020); https://doi.org/10.5281/zenodo.4034929
Bloice, M. D., Roth, P. M. & Holzinger, A. Biomedical image augmentation using Augmentor. Bioinformatics 35, 4522–4524 (2019).
doi: 10.1093/bioinformatics/btz259
Goedhart, J. PlotTwist: A web app for plotting and annotating continuous data. PLoS Biol. 18, e3000581 (2020).
doi: 10.1371/journal.pbio.3000581
Tinevez, J.-Y. & Pylvänäinen, J. W. Cell Migration with ERK Signalling (2021); https://doi.org/10.5281/zenodo.5205955
Jacquemet, G., Pylvänäinen, J. W. & Tinevez, J.-Y. Tracking Glioblastoma–Astrocytoma Cells Imaged in Brightfield with TrackMate-Cellpose (2022); https://doi.org/10.5281/zenodo.5863317
Nassif, X. et al. Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells. 8, 719–725 (1993).
Ke, S.-H. & Madison, E. L. Rapid and efficient site-directed mutagenesis by single-tube ‘megaprimer’ PCR method. Nucleic Acids Res. 25, 3371–3372 (1997).
doi: 10.1093/nar/25.16.3371
Soyer, M. et al. Early sequence of events triggered by the interaction of Neisseria meningitidis with endothelial cells. Cell. Microbiol. 16, 878–895 (2014).
doi: 10.1111/cmi.12248
Morales, V. M., Bäckman, A. & Bagdasarian, M. A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. Gene 97, 39–47 (1991).
doi: 10.1016/0378-1119(91)90007-X
Geoffroy, M.-C., Floquet, S., Métais, A., Nassif, X. & Pelicic, V. Large-scale analysis of the meningococcus genome by gene disruption: resistance to complement-mediated lysis. Genome Res. 13, 391–398 (2003).
doi: 10.1101/gr.664303
Georgiadou, M., Castagnini, M., Karimova, G., Ladant, D. & Pelicic, V. Large-scale study of the interactions between proteins involved in type IV pilus biology in Neisseria meningitidis: characterization of a subcomplex involved in pilus assembly. Mol. Microbiol. 84, 857–873 (2012).
doi: 10.1111/j.1365-2958.2012.08062.x
Le Blanc, L., Rigaud, S. & Tinevez, J.-Y. Neisseria meningitidis Bacterial Growth (2021); https://doi.org/10.5281/zenodo.5419619
Hakanpaa, L. et al. Targeting β1-integrin inhibits vascular leakage in endotoxemia. Proc. Natl Acad. Sci. USA 115, E6467–E6476 (2018).
doi: 10.1073/pnas.1722317115
Jacquemet, G., Minh-Son-Phan & Tinevez, J.-Y. Tracking Focal Adhesions with TrackMate and Weka—Tutorial Dataset 2 (2022); https://doi.org/10.5281/zenodo.5978940
Fantham, M. & Kaminski, C. F. A new online tool for visualization of volumetric data. Nat. Photonics 11, 69–69 (2017).
doi: 10.1038/nphoton.2016.273
Tinevez, J.-Y., Pylvänäinen, J. W. & Jacquemet, G. Segmenting Cells in a Spheroid in 3D using 2D StarDist within TrackMate (2021); https://doi.org/10.5281/zenodo.5220610
Kar, A. Original Stacks and Segmented Data (2021); https://doi.org/10.6084/m9.figshare.14447079.v1
Ulman, V. et al. An objective comparison of cell-tracking algorithms. Nat. Methods 14, 1141–1152 (2017).
doi: 10.1038/nmeth.4473
Maška, M. et al. A benchmark for comparison of cell tracking algorithms. Bioinformatics 30, 1609–1617 (2014).
doi: 10.1093/bioinformatics/btu080

Auteurs

Dmitry Ershov (D)

Institut Pasteur, Université de Paris Cité, Image Analysis Hub, Paris, France.
Institut Pasteur, Université de Paris Cité, Biostatistics and Bioinformatic Hub, Paris, France.

Minh-Son Phan (MS)

Institut Pasteur, Université de Paris Cité, Image Analysis Hub, Paris, France.

Joanna W Pylvänäinen (JW)

Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
Åbo Akademi University, Faculty of Science and Engineering, Biosciences, Turku, Finland.
Turku Bioimaging, University of Turku and Åbo Akademi University, Turku, Finland.

Stéphane U Rigaud (SU)

Institut Pasteur, Université de Paris Cité, Image Analysis Hub, Paris, France.

Laure Le Blanc (L)

Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections unit, Paris, France.

Arthur Charles-Orszag (A)

Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections unit, Paris, France.

James R W Conway (JRW)

Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.

Romain F Laine (RF)

MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
The Francis Crick Institute, London, UK.
Micrographia Bio, Translation and Innovation Hub, London, UK.

Nathan H Roy (NH)

Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA.

Daria Bonazzi (D)

Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections unit, Paris, France.

Guillaume Duménil (G)

Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections unit, Paris, France.

Guillaume Jacquemet (G)

Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland. guillaume.jacquemet@abo.fi.
Åbo Akademi University, Faculty of Science and Engineering, Biosciences, Turku, Finland. guillaume.jacquemet@abo.fi.
Turku Bioimaging, University of Turku and Åbo Akademi University, Turku, Finland. guillaume.jacquemet@abo.fi.

Jean-Yves Tinevez (JY)

Institut Pasteur, Université de Paris Cité, Image Analysis Hub, Paris, France. jean-yves.tinevez@pasteur.fr.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature
Cephalometry Humans Anatomic Landmarks Software Internet

Classifications MeSH