TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines.
Journal
Nature methods
ISSN: 1548-7105
Titre abrégé: Nat Methods
Pays: United States
ID NLM: 101215604
Informations de publication
Date de publication:
07 2022
07 2022
Historique:
received:
20
09
2021
accepted:
25
04
2022
pubmed:
3
6
2022
medline:
12
7
2022
entrez:
2
6
2022
Statut:
ppublish
Résumé
TrackMate is an automated tracking software used to analyze bioimages and is distributed as a Fiji plugin. Here, we introduce a new version of TrackMate. TrackMate 7 is built to address the broad spectrum of modern challenges researchers face by integrating state-of-the-art segmentation algorithms into tracking pipelines. We illustrate qualitatively and quantitatively that these new capabilities function effectively across a wide range of bio-imaging experiments.
Identifiants
pubmed: 35654950
doi: 10.1038/s41592-022-01507-1
pii: 10.1038/s41592-022-01507-1
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
829-832Subventions
Organisme : Medical Research Council
ID : MR/T027924/1
Pays : United Kingdom
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Sbalzarini, I. F. & Koumoutsakos, P. Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol. 151, 182–195 (2005).
doi: 10.1016/j.jsb.2005.06.002
Chenouard, N., Bloch, I. & Olivo-Marin, J.-C. Multiple hypothesis tracking for cluttered biological image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2736–3750 (2013).
doi: 10.1109/TPAMI.2013.97
Piccinini, F., Kiss, A. & Horvath, P. CellTracker (not only) for dummies. Bioinformatics 32, 955–957 (2016).
doi: 10.1093/bioinformatics/btv686
Tinevez, J.-Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).
doi: 10.1016/j.ymeth.2016.09.016
McQuin, C. et al. CellProfiler 3.0: Next-generation image processing for biology. PLoS Biol. 16, e2005970 (2018).
doi: 10.1371/journal.pbio.2005970
Chenouard, N. et al. Objective comparison of particle tracking methods. Nat. Methods 11, 281–289 (2014).
doi: 10.1038/nmeth.2808
Moen, E. et al. Deep learning for cellular image analysis. Nat. Methods 16, 1233–1246 (2019).
doi: 10.1038/s41592-019-0403-1
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
doi: 10.1038/nmeth.2019
Sage, D., Neumann, F. R., Hediger, F., Gasser, S. M. & Unser, M. Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics. IEEE Trans. Image Process. 14, 1372–1383 (2005).
doi: 10.1109/TIP.2005.852787
Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).
doi: 10.1038/s41592-019-0582-9
Arganda-Carreras, I. et al. Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33, 2424–2426 (2017).
doi: 10.1093/bioinformatics/btx180
Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).
doi: 10.1038/s41592-020-01018-x
Legland, D., Arganda-Carreras, I. & Andrey, P. MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 32, 3532–3534 (2016).
pubmed: 27412086
Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell detection with star-convex polygons. in Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 (eds. Frangi, A. F., Schnabel, J. A., Davatzikos, C., Alberola-López, C. & Fichtinger, G.) 265–273 (Springer International Publishing, 2018).
von Chamier, L. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat. Commun. 12, 2276 (2021).
doi: 10.1038/s41467-021-22518-0
Caicedo, J. C. et al. Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl. Nat. Methods 16, 1247–1253 (2019).
doi: 10.1038/s41592-019-0612-7
Lutolf, M. P., Doyonnas, R., Havenstrite, K., Koleckar, K. & Blau, H. M. Perturbation of single hematopoietic stem cell fates in artificial niches. Integr. Biol. Quant. Biosci. Nano Macro 1, 59–69 (2009).
Haase, R. et al. CLIJ: GPU-accelerated image processing for everyone. Nat. Methods 17, 5–6 (2020).
doi: 10.1038/s41592-019-0650-1
Haase, R. clij/TrackMate-clij2: 2.5.1.3-doi. (Zenodo, 2022); https://doi.org/10.5281/zenodo.5983244
Regot, S., Hughey, J. J., Bajar, B. T., Carrasco, S. & Covert, M. W. High-sensitivity measurements of multiple kinase activities in live single cells. Cell 157, 1724–1734 (2014).
doi: 10.1016/j.cell.2014.04.039
Kudo, T. et al. Live-cell measurements of kinase activity in single cells using translocation reporters. Nat. Protoc. 13, 155–169 (2018).
doi: 10.1038/nprot.2017.128
Jacquemet, G. Combining StarDist and TrackMate Example 1—Breast Cancer Cell Dataset (2020); https://doi.org/10.5281/zenodo.4034976
Jacquemet, G. et al. FiloQuant reveals increased filopodia density during breast cancer progression. J. Cell Biol. 216, 3387–3403 (2017).
doi: 10.1083/jcb.201704045
Jacquemet, G., Pylvänäinen, J. W. & Tinevez, J.-Y. Tracking Breast Cancer Cells Migrating Collectively and Imaged in Fluorescence with TrackMate-Cellpose (2022); https://doi.org/10.5281/zenodo.5864646
Tinevez, J.-Y., Jacquemet, G. & Pylvänäinen, J. W. Tracking Label Images with TrackMate (2021); https://doi.org/10.5281/zenodo.5221424
Fazeli, E. et al. Automated cell tracking using StarDist and TrackMate. F1000Res. 9, 1279 (2020).
doi: 10.12688/f1000research.27019.1
Tinevez, J.-Y., Jacquemet, G. & Roy, N. H. T cells Migration Followed with TrackMate (2021); https://doi.org/10.5281/zenodo.5206119
Roy, N. H. & Jacquemet, G. Combining StarDist and TrackMate Example 2—T Cell Dataset (2020); https://doi.org/10.5281/zenodo.4034929
Bloice, M. D., Roth, P. M. & Holzinger, A. Biomedical image augmentation using Augmentor. Bioinformatics 35, 4522–4524 (2019).
doi: 10.1093/bioinformatics/btz259
Goedhart, J. PlotTwist: A web app for plotting and annotating continuous data. PLoS Biol. 18, e3000581 (2020).
doi: 10.1371/journal.pbio.3000581
Tinevez, J.-Y. & Pylvänäinen, J. W. Cell Migration with ERK Signalling (2021); https://doi.org/10.5281/zenodo.5205955
Jacquemet, G., Pylvänäinen, J. W. & Tinevez, J.-Y. Tracking Glioblastoma–Astrocytoma Cells Imaged in Brightfield with TrackMate-Cellpose (2022); https://doi.org/10.5281/zenodo.5863317
Nassif, X. et al. Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells. 8, 719–725 (1993).
Ke, S.-H. & Madison, E. L. Rapid and efficient site-directed mutagenesis by single-tube ‘megaprimer’ PCR method. Nucleic Acids Res. 25, 3371–3372 (1997).
doi: 10.1093/nar/25.16.3371
Soyer, M. et al. Early sequence of events triggered by the interaction of Neisseria meningitidis with endothelial cells. Cell. Microbiol. 16, 878–895 (2014).
doi: 10.1111/cmi.12248
Morales, V. M., Bäckman, A. & Bagdasarian, M. A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. Gene 97, 39–47 (1991).
doi: 10.1016/0378-1119(91)90007-X
Geoffroy, M.-C., Floquet, S., Métais, A., Nassif, X. & Pelicic, V. Large-scale analysis of the meningococcus genome by gene disruption: resistance to complement-mediated lysis. Genome Res. 13, 391–398 (2003).
doi: 10.1101/gr.664303
Georgiadou, M., Castagnini, M., Karimova, G., Ladant, D. & Pelicic, V. Large-scale study of the interactions between proteins involved in type IV pilus biology in Neisseria meningitidis: characterization of a subcomplex involved in pilus assembly. Mol. Microbiol. 84, 857–873 (2012).
doi: 10.1111/j.1365-2958.2012.08062.x
Le Blanc, L., Rigaud, S. & Tinevez, J.-Y. Neisseria meningitidis Bacterial Growth (2021); https://doi.org/10.5281/zenodo.5419619
Hakanpaa, L. et al. Targeting β1-integrin inhibits vascular leakage in endotoxemia. Proc. Natl Acad. Sci. USA 115, E6467–E6476 (2018).
doi: 10.1073/pnas.1722317115
Jacquemet, G., Minh-Son-Phan & Tinevez, J.-Y. Tracking Focal Adhesions with TrackMate and Weka—Tutorial Dataset 2 (2022); https://doi.org/10.5281/zenodo.5978940
Fantham, M. & Kaminski, C. F. A new online tool for visualization of volumetric data. Nat. Photonics 11, 69–69 (2017).
doi: 10.1038/nphoton.2016.273
Tinevez, J.-Y., Pylvänäinen, J. W. & Jacquemet, G. Segmenting Cells in a Spheroid in 3D using 2D StarDist within TrackMate (2021); https://doi.org/10.5281/zenodo.5220610
Kar, A. Original Stacks and Segmented Data (2021); https://doi.org/10.6084/m9.figshare.14447079.v1
Ulman, V. et al. An objective comparison of cell-tracking algorithms. Nat. Methods 14, 1141–1152 (2017).
doi: 10.1038/nmeth.4473
Maška, M. et al. A benchmark for comparison of cell tracking algorithms. Bioinformatics 30, 1609–1617 (2014).
doi: 10.1093/bioinformatics/btu080