Cleavage of the selective autophagy receptor SQSTM1/p62 by the SARS-CoV-2 main protease NSP5 prevents the autophagic degradation of viral membrane proteins.
Autophagic degradation
Autophagy
NSP5
SARS-CoV-2
SQSTM1/p62
Journal
Molecular biomedicine
ISSN: 2662-8651
Titre abrégé: Mol Biomed
Pays: Singapore
ID NLM: 9918283581406676
Informations de publication
Date de publication:
03 Jun 2022
03 Jun 2022
Historique:
received:
07
04
2022
accepted:
16
05
2022
entrez:
2
6
2022
pubmed:
3
6
2022
medline:
3
6
2022
Statut:
epublish
Résumé
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the coronavirus disease 2019 (COVID-19) global pandemic. Omicron, a new variant of SARS-CoV-2, has the characteristics of strong transmission and pathogenicity, short incubation period, and rapid onset progression, and has spread rapidly around the world. The high replication rate and intracellular accumulation of SARS-CoV-2 are remarkable, but the underlying molecular mechanisms remain unclear. Autophagy acts as a conservative cellular defence mechanism against invading pathogens. Here, we provide evidence that the main protease of SARS-CoV-2, NSP5, effectively cleaves the selective autophagy receptor p62. NSP5 targets p62 for cleavage at glutamic acid 354 and thus abolishes the capacity of p62 to mediate selective autophagy. It was further shown that p62 specifically interacted with ubiquitinated SARS-CoV-2 M, the viral membrane protein, to promote its autophagic degradation. In the presence of NSP5, p62-mediated autophagic degradation of the M protein was inhibited. The cleaved products of p62 also cannot facilitate the degradation of the M protein. Collectively, our findings reveal that p62 is a novel host target of SARS-CoV-2 NSP5 and suggest that selective autophagy targets viruses and potential strategies by which the virus evades autophagic clearance. Our results may provide new ideas for the development of anti-COVID-19 drugs based on autophagy and NSP5.
Identifiants
pubmed: 35654983
doi: 10.1186/s43556-022-00083-2
pii: 10.1186/s43556-022-00083-2
pmc: PMC9162485
doi:
Types de publication
Journal Article
Langues
eng
Pagination
17Subventions
Organisme : National Natural Science Foundation
ID : 32022020
Organisme : National Natural Science Foundation
ID : 31970693
Organisme : National Natural Science Foundation
ID : 81902997
Organisme : Disciplinary Excellence Development 135 program of West China Hospital
ID : ZYYC20015
Organisme : Sichuan Province Science and Technology Project
ID : 2020JDJQ0015
Informations de copyright
© 2022. The Author(s).
Références
Cell. 2019 Jan 10;176(1-2):11-42
pubmed: 30633901
Emerg Microbes Infect. 2021 Dec;10(1):196-205
pubmed: 33399028
Nat Rev Microbiol. 2021 Mar;19(3):155-170
pubmed: 33116300
Nat Rev Mol Cell Biol. 2021 Nov;22(11):733-750
pubmed: 34302147
Cell Mol Biol Lett. 2016 Dec 13;21:29
pubmed: 28536631
Sci China Life Sci. 2022 Feb;65(2):280-294
pubmed: 34387838
Eur Rev Med Pharmacol Sci. 2021 Dec;25(24):8012-8018
pubmed: 34982465
Nature. 2020 Jun;582(7811):289-293
pubmed: 32272481
Viruses. 2021 Aug 11;13(8):
pubmed: 34452452
Autophagy. 2013 Oct;9(10):1591-603
pubmed: 23989536
Cell Host Microbe. 2010 Feb 18;7(2):115-27
pubmed: 20159618
Nature. 2020 Mar;579(7798):270-273
pubmed: 32015507
Antioxid Redox Signal. 2019 Aug 20;31(6):458-471
pubmed: 30588824
Mol Cell. 2014 Jan 23;53(2):167-78
pubmed: 24462201
Free Radic Biol Med. 2013 Dec;65:102-116
pubmed: 23792273
J Innate Immun. 2013;5(5):427-33
pubmed: 23774579
J Agric Food Chem. 2021 Apr 21;69(15):4438-4445
pubmed: 33829789
Mol Cell. 2013 Sep 12;51(5):618-31
pubmed: 24011591
Cell Rep. 2018 Mar 20;22(12):3292-3303
pubmed: 29562184
Lancet. 2020 Feb 15;395(10223):470-473
pubmed: 31986257
Nat Commun. 2021 Jun 15;12(1):3623
pubmed: 34131140
Emerg Microbes Infect. 2020 Dec;9(1):221-236
pubmed: 31987001
Osong Public Health Res Perspect. 2020 Feb;11(1):3-7
pubmed: 32149036
Cell Discov. 2021 May 4;7(1):31
pubmed: 33947832
Sci Signal. 2017 Feb 28;10(468):
pubmed: 28246200
Cells. 2021 Aug 05;10(8):
pubmed: 34440758
Nat Commun. 2019 Dec 19;10(1):5792
pubmed: 31857589
FEBS J. 2015 Dec;282(24):4672-8
pubmed: 26432171
Front Cell Dev Biol. 2021 Jul 27;9:716208
pubmed: 34386498
J Innate Immun. 2013;5(5):480-93
pubmed: 23391695
Proc Natl Acad Sci U S A. 2021 Sep 14;118(37):
pubmed: 34452991
Nat Commun. 2020 Jun 24;11(1):3202
pubmed: 32581217
Int J Mol Sci. 2020 Dec 15;21(24):
pubmed: 33333742
Cell Death Dis. 2021 Apr 14;12(4):405
pubmed: 33854041
Int J Environ Res Public Health. 2022 Apr 11;19(8):
pubmed: 35457468
EMBO Rep. 2013 Jun;14(6):534-44
pubmed: 23619093
J Biol Chem. 2007 Aug 17;282(33):24131-45
pubmed: 17580304
Autophagy. 2018;14(7):1201-1213
pubmed: 29929428
PLoS Genet. 2015 Feb 27;11(2):e1004987
pubmed: 25723488
J Cell Biol. 2005 Nov 21;171(4):603-14
pubmed: 16286508
Microorganisms. 2020 Aug 18;8(8):
pubmed: 32824639
Nat Rev Microbiol. 2021 Mar;19(3):141-154
pubmed: 33024307
Autophagy. 2021 Jan;17(1):1-382
pubmed: 33634751
Viruses. 2021 Dec 09;13(12):
pubmed: 34960736
Biomolecules. 2021 Apr 19;11(4):
pubmed: 33921886
Cell. 2022 Feb 3;185(3):457-466.e4
pubmed: 34995482
Autophagy. 2021 Nov;17(11):3763-3775
pubmed: 33719859
Lancet. 2020 Feb 15;395(10223):497-506
pubmed: 31986264
Cell Res. 2017 May;27(5):657-674
pubmed: 28322253
BMJ. 2021 Nov 29;375:n2943
pubmed: 34845008
Emerg Microbes Infect. 2021 Dec;10(1):178-195
pubmed: 33372854
Cell Rep. 2021 May 18;35(7):109126
pubmed: 33974846
Dev Cell. 2021 Feb 22;56(4):427-442.e5
pubmed: 33422265
Mol Cell. 2019 Oct 17;76(2):268-285
pubmed: 31585693
Autophagy. 2011 Mar;7(3):279-96
pubmed: 21189453
Age (Dordr). 2014 Jun;36(3):9626
pubmed: 24557832
Int J Biol Sci. 2021 Apr 10;17(6):1547-1554
pubmed: 33907518
Autophagy. 2022 Apr;18(4):783-798
pubmed: 34382902
Proteomics. 2021 Jan;21(2):e2000246
pubmed: 33111431
Nature. 2020 Mar;579(7798):265-269
pubmed: 32015508